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Abstract 

We describe a new method of facilitating inequality and poverty analysis of grouped 
distributional data by allowing individual income observations to be reconstructed from 
any feasible grouping pattern. In contrast to earlier methods, our procedure ensures that 
the characteristics of the synthetic sample exactly match the reported values. The 
performance of the algorithm is evaluated first by using household survey records to 
compare true income observations with their synthetic counterparts, then by comparing 
the true and generated values of the Gini coefficient and other inequality indices. The 
results indicate that the new technique is capable of reproducing individual data from 
grouped statistics with a high degree of accuracy. 
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1 Introduction 

Research on inequality and poverty during the past half century has been greatly 
influenced by the writings of Amartya Sen. Amongst his many and varied contributions, 
the Radcliffe Lectures on inequality (Sen 1973) and the Econometrica article on poverty 
measurement (Sen 1976) spurred countless numbers of readers to attempt to confront 
distributional questions with empirical evidence. Yet when these publications were 
written a generation ago, anyone wishing to undertake empirical work faced serious 
handicaps. Computing hardware and software were rudimentary by current standards. 
Household microdata were in short supply and rarely accessible to independent 
researchers. Those interested in inequality, poverty, and other distribution-related issues 
usually had to be content with simple computational procedures applied to summary 
statistics, grouped frequency tables, and other types of published secondary material. 

To compensate for the shortcomings, a variety of ingenious procedures and tools were 
developed. Many different functional forms were offered as approximations to the 
empirical income distributions and compared to the alternatives. Examples of this genre 
are provided by Gastwirth (1972), Salem and Mount (1974), Kakwani (1976), Kakwani 
and Podder (1973, 1976), Singh and Maddala (1976), Kloek and Van Dijk (1978), 
McDonald and Ransom (1979, 1981), Harrison (1981) and McDonald (1984).1 Other 
authors, including Cowell and Mehta (1982) proposed ways of estimating inequality 
indices from grouped data. Attention was also given to the optimal way of summarizing 
data in order to preserve distributional information (Davies and Shorrocks 1989). 

Nowadays, the quantity, quality and availability of household datasets have rendered 
this earlier literature largely redundant. Related issues—such as the variability 
inevitably associated with finite samples—are more likely to be addressed using semi-
parametric or non-parametric techniques like kernel density estimation (see DiNardo 
et al. 1996; Deaton 1997; D’Ambrosio 1999). However, the appetite for extracting 
distributional information from grouped data has not completely vanished. Independent 
researchers seldom have the capacity to work simultaneously with many micro datasets, 
and may be obliged to make use of summary information. Micro information from 
surveys in the distant past may not have survived, forcing those interested in long-term 
distributional trends to grapple with published grouped data. In other cases, access to 
microdata is restricted by concerns about confidentiality or political sensitivity, or 
because users are charged a high fee. 

The continuing need for methods of extracting information from grouped data is well 
illustrated by the recent flurry of interest in the world distribution of income and its 
trend over time, as studied by Schultz (1998), Milanovic (2002, 2005), Bourguignon 
and Morrisson (2002), Sala-i-Martin (2002), Capéau and Decoster (2004), and Dowrick 
and Akmal (2005), amongst others. While a number of factors contribute to the 
controversies in this literature—including the coverage of countries, the concept used 
for average income (or expenditure), and the adjustment made to official exchange rates 
to compensate for purchasing power variations—limitation on access to microdata is 
perhaps the greatest single source of the conflicting results. Milanovic (2002, 2005) 
                                                 

1 See Bandourian et al. (2002) and the references cited therein for more recent contributions to this topic. 
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utilizes a large number of household surveys, but others have to resort to grouped 
income distribution data, and to adopt simplifying assumptions, conjecturing, for 
example, that individual countries can be adequately represented by 5-person or 10-
person distributions whose incomes correspond to quintile or decile shares. Similar 
concerns apply with even greater force to studies of long-term poverty trends, since the 
approximation to a 5- or 10-person distribution clearly limits the nuance of the results. 

Our own interest in the question of extracting information from grouped data has been 
prompted by a desire to analyse alternative poverty trend scenarios for Russia, where 
income distribution series are only available in grouped form (Shorrocks and Kolenikov 
2001).2 It has been reinforced by exposure to the problems posed by the World Income 
Inequality Database (WIID) which contains summary observations on 156 countries, 
most relating to the period 1960-2005.3 Of the 4,981 observations, 2,945 include 
information on quintile or decile shares and Gini coefficients. Around 35 per cent of the 
observations have more details. Comparisons by researchers would be facilitated if all 
observations had figures for decile shares, and perhaps also for top percentile shares, 
alternative inequality measures, and poverty rates corresponding to a variety of poverty 
lines.4 

Estimates of poverty measures and the Gini inequality index can be obtained from 
grouped data using the POVCAL software on the World Bank website. In fact, 
POVCAL was used to generate Gini values for many of the observations inherited by 
the WIID database from the World Bank. However, POVCAL operates by fitting the 
general Quadratic and Beta Lorenz functions to grouped data and then applying the 
formulae reported in Datt (1998). Unfortunately, as shown later, the General Quadratic 
and Beta forms often generate Lorenz curves that dip below the horizontal axis—in 
other words, the software can generate negative values even when the data refer to 
consumption rather than income. Furthermore, the quantile shares associated with the 
fitted functions can differ significantly from the reported values with which the 
procedure begins.5 

This paper describes an improved method for calculating distributional indicators such 
as inequality values and poverty rates from grouped distribution data. An algorithm 
allows a sample of ‘income’ observations to be reconstructed from any valid set of 
Lorenz co-ordinates.6 This sample may then be used to compute inequality and poverty 
statistics, by treating the sample observations as if they had been drawn from a 
household survey with a homogeneous population of equally weighted households. 
                                                 

2 Similar hurdles are faced by those interested in inequality trends in China; see, for example, 
Chotikapanich, Rao and Tang (2007) and Chotikapanich, Griffiths and Rao (2007).  

3 The WIID database may be accessed at www.wider.unu.edu/research. 

4 The algorithm described in this paper has been used recently to generate country wealth samples that 
allow the global distribution of personal wealth to be estimated: see Davies et al. (2008, 2007). 

5 The POVCAL software can be accessed from www.worldbank.org/LSMS/tools/povcal/. See Minoiu 
and Reddy (2006) for a detailed critique. 

6 Here and elsewhere in the paper, the term ‘income’ is used generically. Lorenz curves plot the 
cumulative income shares against the cumulative population shares when observations are ordered in 
terms of increasing incomes. Only relative incomes matter for Lorenz curves, so the synthetic sample 
values can be arbitrarily normalized, for example to ensure that the mean is unity. 
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Two initial restrictions are placed on the synthetic sample, although neither is strictly 
necessary. First, the observations are constrained to take positive values. This was done 
to avoid instances in which, say, negative observations are produced for consumption, 
and also to ensure that values can be computed for all inequality indices in common use. 
Second, a sample size of 1,000 was chosen for the synthetic distribution. This number 
was selected primarily in order to produce poverty rates accurate to one decimal point 
for any given poverty line. A smaller sample size, though feasible, is probably 
unnecessary given the computing power available nowadays. A larger sample would 
reduce the downward bias in the inequality value due to averaging incomes within each 
tenth of a percentile; but the scope for improvement in accuracy in this and other 
respects is likely to be modest, as confirmed later in this paper by experiments with 
samples of 2,000 observations. 

In principle, many different methods can be used to construct the samples, including 
parametric and non-parametric techniques employed in the past to estimate distributions 
from grouped data. Three main criteria were used to discriminate between the 
alternative procedures: the algorithm should be universally applicable, in the sense that 
it can accommodate any feasible pattern of grouped data; the characteristics of the 
generated sample should exactly match the reported grouped values; and the procedure 
should perform well in tests that start with an income sample, compute grouped values, 
and then use the algorithm to reconstruct the ungrouped data. It is also an advantage to 
have an algorithm that is both speedy and easy to understand.7 

The criterion of universal applicability appears anodyne, but turns out in practice to be 
quite stringent when combined with the requirement that the sample values exactly 
match the reported data. In particular, it is possible to encounter grouped data for which 
the mean incomes of adjacent groups are identical. Usually this happens because the 
published data on percentage shares have been rounded to three, or even two, significant 
figures. If mean incomes are similar for adjacent groups, then the income values in the 
relevant ranges must be very compressed, perhaps even identical. While this is unlikely 
to be true in practice, we took the view that a feasible pattern of grouped data, however 
implausible, should be respected, and that the chosen algorithm should be capable of 
handling problematic situations as well as more common arrangements. 

The procedure proposed in this paper involves two main stages. Stage I fits a parametric 
distribution to the grouped observations and then generates a sample from the fitted 
distribution as an initial approximation to the synthetic observations. Stage II of the 
algorithm takes the raw sample and adjusts the values until the sample statistics exactly 
match the ‘true’ figures. We experimented with several alternative procedures for 
Stage II, eventually settling on the ‘stretching’ routine described in Section 2 below. For 
Stage I, any of the standard distributional or functional forms is a potential candidate: 
the lognormal (LN), General Quadratic (GQ), Beta, Generalized Beta (GB) and Singh-
Maddala (SM) forms were the candidates chosen for this paper. 

                                                 

7 Other conditions might be added to this list. For example, it is probably a good idea to have relatively 
‘smooth’ data that avoids bunching of values or gaps in the income space. 
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2 The algorithm 

Consider a real interval partitioned into m disjoint income classes which are labelled in 
increasing order. The grouped distribution data for a population of individuals is 
captured by m+1 Lorenz co-ordinates * *( , ),k kp L  where *

kp  (k = 1, … , m) denotes the 
aggregate proportion of the population in income classes 1 to k; *

kL  (k = 1, …, m) is the 
corresponding (cumulative) income share; and * *

0 0( , )p L  = (0, 0).8 In practice, these 
Lorenz co-ordinates will typically derive from data reported in the form of the quantile 
shares, for example decile or quintile shares; but they can also originate from frequency 
distributions which may record additional details such as the bounds of the income 
classes. Details of the absolute levels of income are lost in the construction of Lorenz 
curves, so the overall mean value may be taken to be unity, in which case the mean 
income of class k is given by 

(1) 
* *

* 1
* *

1

k k
k

k k

L L
p p

μ −

−

−=
−

,     k = 1, … , m. 

Our aim is to construct a synthetic (and ordered) sample of n equally weighted 
observations which has a mean value of unity and properties that conform to those of 
the grouped data. To achieve the required match with the grouped data, the n 
observations are partitioned into m non-overlapping (and ordered) groups, with group k 
containing km  = * *

1( )k kn p p −−  observations. The value of the ith observation in class k is 
denoted by k ix  (k = 1, … , m; i = 1, …, km ), and the sample mean of class k is signified 
by kμ . 

The proposed ‘ungrouping’ algorithm involves two stages. Stage I constructs a rough 
initial sample with unit mean by generating a set of synthetic values from a parametric 
form fitted to the grouped data. Suppose, for example, that the underlying distribution is 
taken to be lognormal and that the sample size is chosen to be 1,000. A value for the 
standard deviation of log incomes, σ, is obtained by averaging the m-1 estimates: 

(2) 1 * 1 *( ) ( )k k kp Lσ − −= Φ − Φ , k = 1, …, m-1, 

where Φ  is the standard normal distribution function (Aitchison and Brown 1957; 
Kolenikov and Shorrocks 2005: Appendix). The raw sample may then be generated by 
the percentile points 0.05, 0.15, …, 99.85, 99.95 corresponding to the fitted lognormal. 
In addition to the lognormal, a number of other parametric forms were considered as 
candidates for the initial sample. Results obtained using these alternative specifications 
are discussed in Section 3 below. 

Stage II of the algorithm begins with the initial sample and then adjusts the observations 
until the sample statistics match the ‘true’ values.9 Several alternative procedures were 

                                                 

8 Asterisks are used to distinguish the target (true) values from the (non-asterisked) synthetic sample 
values, which may not match the target figures. 

9 Our procedure makes no use of information on the maximum and minimum values within groups, 
although frequency tables for income distributions often report the interval endpoints. It might be possible 
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considered for Stage II, but many of them failed to converge in a reasonable time 
period, especially when confronted with unusual data properties, such as adjacent 
income ranges with similar means. The two-step process eventually chosen is both 
universally applicable and speedy.  

The first step adjusts the sample observations in such a way that each of the class k 
mean incomes, ,kμ  is transformed into the corresponding ‘true’ values, *,kμ  and 
appropriate changes made to the intermediate values. To be precise, consider any 
interval 1[ , ),k kμ μ +  (k = 1, … , m-1), and convert the initial sample value 1[ , )j k kx μ μ +∈  
into the intermediate value ˆ jx  according to the rule 

(3a) 
*

* *
1

ˆ - 
-

j k

k k

x μ
μ μ+

 =
1

- 
-

j k

k k

x μ
μ μ+

,    for k = 1, … , m-1  and  1[ , )j k kx μ μ +∈ , 

or equivalently 

(3b) ˆ jx  =
* *

* 1

1

- ( - )
-

k k
k j k

k k

xμ μμ μ
μ μ

+

+

+ ,    for k = 1, … , m-1  and  1[ , )j k kx μ μ +∈ . 

Similar adjustments are made at the bottom and top of the distribution using the rule:  

(4) ˆ jx  = 
*
1

1
jxμ

μ
     for 1jx μ< ;    ˆ jx  = 

*
m

j
m

xμ
μ

,    for j kx μ≥  

Note that the transformation given by (3) is well defined because the raw sample from 
Stage I is both distinct and ordered, hence 1k kμ μ+ > . Note also that the transformation 
defined by (3) and (4) is (weakly) monotonic, so the sample retains its non-decreasing 
order. 

The above construction ensures that, within each income group, the true mean lies 
within the range of sample values; in other words: 

(5) *ˆ ˆmin maxki k kii i
x xμ≤ ≤ ,    for k = 1, … , m. 

The second step keeps the group bounds fixed and compresses the gaps between the 
sample values and the upper (resp. lower) bound of the group if the sample mean is 
below (resp. above) the true value. Specifically, define the lower bound of each group 
by  

(6) c1 = 0;    ck  = ( )1
1,2

ˆ ˆmax min , 1,k i k iii
x x k− + >  

and convert the intermediate value ˆk ix  into the final value *ˆk ix  according to the rule  

                                                                                                                                               

to refine our algorithm to exploit this additional information, for example by adjusting the data at the start 
of Stage II to match the true group endpoints. 
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(7a) 
*

* 1
1 1

1

ˆ( )
ˆ

k k
k i k k ki

k k

cx c c x
c

μ
μ

+
+ +

+

−= − −
−

,    if * ˆk kμ μ>  and k  < m; 

(7b) 
*

* ˆ( )
ˆ

k k
k i k ki k

k k

cx c x c
c

μ
μ

−= + −
−

,    if * ˆk kμ μ<  or k = m. 

It may be confirmed that this transformation retains the sample ordering both within and 
across groups, and that the group means compiled for the final sample values, *

k ix , match 

the true values, *.μ  Within two rounds, therefore, the algorithm produces an ordered 
sample that exactly replicates the properties of the reported grouped data. 

3 Evaluation 

The performance of the ‘ungrouping’ algorithm may be assessed in a variety of ways. 
One method exploits the additional statistics often attached to grouped data. For 
example, the values of Gini coefficients (presumably calculated from the original 
microdata) are sometimes reported alongside published frequency tables. Generating a 
synthetic income sample from the grouped data enables the Gini index to be estimated 
and compared to the reported Gini value. 

This option was explored in the context of the WIID database using the lognormal as a 
first approximation. On the whole the results are encouraging, especially when applied 
to the WIID observations known to be more reliable. In the vast majority of cases, the 
difference between the ‘true’ Gini value and the ‘synthetic’ estimate was less than 0.003 
(approximately 1 per cent). As expected, this exercise also suggests that the errors 
associated with our algorithm shrink as the grouping becomes less coarse (and the 
number of Lorenz co-ordinates increases). 

While this method of assessment has its attractions, a number of problems arise, 
particularly with regard to reconciling the occasional large discrepancies between the 
reported Gini figure and the synthetic estimate. It is possible that the published 
frequency table and Gini value refer to different sets of data for the same country and 
point of time, or that some of the numbers have been reported incorrectly. Other errors 
could have been introduced by estimating the Gini values from the grouped data, rather 
than the original micro-sample. It therefore becomes difficult to evaluate performance 
without relying heavily on personal judgements concerning the reliability of individual 
observations.  

Another, more stringent, test starts with a suitable micro sample, constructs a set of 
grouped data, and then examines the degree to which the ‘ungrouping’ algorithm 
successfully reconstructs the original data. Information contained in the US Current 
Population Survey (CPS) for 2000 was used for this purpose. A random sample of 1,000 
(positive) income observations was drawn from the CPS microdata and various quantile 
shares computed from the sample. The ungrouping utility was then applied to the 
grouped data to generate a synthetic sample of 1,000 which could be compared with the 
original CPS sample. Three patterns of grouped data were considered, representing the 
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most common arrangements found in practice: quintile shares; decile shares; and the 
intermediate case of quintile shares plus the top and bottom decile shares (indicated by 
the label ‘quintile-TB’). To allow for sampling variations, the exercise was repeated 
first 100 times, and then 200 times. To study the influence of sample size, the 
experiment was later repeated with a sample consisting of 2,000 observations. 

Two methods were used to assess the reliability of the synthetic sample. First, the value 
of each observation in the (ordered) synthetic sample was compared to its counterpart in 
the true distribution. Second, inequality values calculated from the reconstructed data 
were compared with their ‘true’ values. On the whole, the first exercise is more 
comprehensive and insightful, because the synthetic data may contain systematic biases. 
Our limited experience suggests that the generated sample may underestimate incomes 
on some segments of the Lorenz curve and exaggerate incomes on other segments. 
However, estimates of the Gini value and other inequality indices may nevertheless 
closely approximate their true values, giving a spurious impression of accuracy and 
reliability. 

Five alternative specifications were considered as candidates for the distributional forms 
used in Stage I: the lognormal (LN), General Quadratic (GQ), Beta, Generalized Beta 
(GB), and Singh-Maddala (SM) functions.10 The Beta distribution and the General 
Quadratic Lorenz function both proved to have a major flaw which ruled them out of 
further consideration: most of the synthetic samples generated during Stage I contained 
one or more negative observations, despite the fact that all income values are positive in 
the CPS data. With quintile information, both functional forms fail to ensure non-
negative values over 60 per cent of the time. The failure rate rises above 90 per cent 
with the quintile-TB data, and approaches 100 per cent with a sample size of 2000 (see 
Table 1). This deficiency eliminated the two functions from further consideration. 

For each of the three remaining functional forms the synthetic sets of sample 
observations were compared to their true counterparts. The results recorded in Table 2 
are obtained by expressing both sets of observations in terms of percentage income 
shares and then computing the absolute deviations. Thus, for example, if the income 
share of the poorest (richest) person is 0.01 (4.8) per cent and the corresponding 
synthetic value is 0.015 (3.4) per cent, then the absolute deviation is 0.005 (1.4) per 
cent. In order to identify any distributional pattern of errors, the absolute deviations are 
summed within each decile.11 

                                                 

10 Details of the lognormal form are given by Aitchison and Brown (1957); the general quadratic Lorenz 
curve by Villasenor and Arnold (1989); the Beta Lorenz curve by Kakwani (1980); the Generalized Beta 
by McDonald (1984); and the Singh-Maddala distribution by Singh and Maddala (1976). 

11 Because the observations are expressed as income shares, the sum of absolute deviations is preferred 
to the mean absolute deviation. The value of the latter is reciprocally related to the sample size; in other 
words, for a fixed gap between the true and synthetic Lorenz curves, the mean absolute deviation will 
halve when the number of sampling points doubles. 
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     Table 1: Percentage of times that negative incomes are generated 

1000 observations  2000 observations 
Grouping pattern 

Beta GQ  Beta GQ 

 100 replications 

Quintile 66 65  79 76 

Quintile-TB 92 90  97 96 

Decile 88 87  94 93 

 200 replications 

Quintile 61 65  78 76 

Quintile-TB 93 92  98 97 

Decile 90 89  96 94 

     Note: Beta = Beta functional form for Lorenz curve. GQ = general quadratic form for Lorenz curve. 

     Source: Authors’ calculations. 

 

Table 2: Sum of absolute deviations of individual income shares, by decile intervals 

 decile 1000 observations 2000 observations 

 LN SM GB ALN ASM AGB LN SM GB ALN ASM AGB

1 0.63 0.17 0.16 0.28 0.15 0.15 0.64 0.17 0.16 0.28 0.14 0.15

2 0.21 0.09 0.11 0.24 0.13 0.13 0.22 0.08 0.11 0.25 0.13 0.13

3 0.12 0.11 0.13 0.07 0.05 0.05 0.11 0.10 0.12 0.06 0.04 0.04

4 0.41 0.17 0.17 0.08 0.06 0.06 0.40 0.16 0.16 0.07 0.05 0.05

5 0.74 0.22 0.19 0.14 0.09 0.09 0.73 0.20 0.17 0.12 0.07 0.07

6 1.07 0.29 0.21 0.17 0.11 0.11 1.03 0.24 0.17 0.15 0.09 0.09

7 1.17 0.23 0.17 0.15 0.12 0.13 1.13 0.17 0.13 0.13 0.11 0.12

8 0.95 0.27 0.40 0.20 0.15 0.17 0.92 0.23 0.41 0.18 0.13 0.15

9 0.49 0.70 0.98 0.49 0.55 0.84 0.43 0.73 1.02 0.39 0.58 0.89

Quintile pattern 

100 replications 

10 4.14 2.61 3.03 2.18 2.38 2.96 3.88 2.50 3.05 1.81 2.31 3.02

Total  9.92 4.87 5.56 3.99 3.78 4.68 9.47 4.59 5.50 3.44 3.66 4.70

1 0.54 0.12 0.12 0.16 0.11 0.11 0.56 0.12 0.11 0.15 0.10 0.10

2 0.12 0.27 0.30 0.05 0.06 0.06 0.12 0.27 0.30 0.05 0.06 0.06

3 0.22 0.30 0.32 0.05 0.06 0.06 0.21 0.30 0.32 0.04 0.05 0.05

4 0.57 0.36 0.34 0.07 0.06 0.06 0.56 0.35 0.33 0.06 0.05 0.05

5 0.90 0.37 0.31 0.09 0.07 0.07 0.90 0.36 0.30 0.08 0.06 0.06

6 1.23 0.39 0.27 0.11 0.09 0.09 1.20 0.34 0.22 0.10 0.08 0.07

7 1.32 0.24 0.19 0.14 0.10 0.10 1.28 0.18 0.16 0.13 0.08 0.08

8 1.05 0.34 0.54 0.16 0.17 0.18 1.01 0.33 0.57 0.13 0.15 0.16

9 0.52 1.02 1.31 0.25 0.26 0.29 0.47 1.08 1.35 0.18 0.22 0.26

Quintile-TB 

pattern 

100 replications 

10 5.00 3.09 3.43 1.95 2.66 3.32 4.74 3.04 3.47 1.54 2.71 3.44

Total  11.48 6.50 7.10 3.04 3.64 4.33 11.04 6.38 7.12 2.47 3.56 4.33

table continues… 
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 decile 1000 observations 2000 observations

 LN SM GB ALN ASM AGB LN SM GB ALN ASM AGB

1 0.58 0.12 0.12 0.16 0.10 0.10 0.59 0.12 0.11 0.15 0.10 0.09

2 0.15 0.22 0.24 0.04 0.04 0.04 0.16 0.22 0.24 0.03 0.03 0.03

3 0.17 0.25 0.24 0.04 0.04 0.04 0.16 0.25 0.24 0.03 0.03 0.03

4 0.50 0.30 0.25 0.05 0.05 0.05 0.49 0.29 0.24 0.05 0.04 0.04

5 0.83 0.32 0.22 0.06 0.06 0.06 0.82 0.31 0.21 0.06 0.05 0.05

6 1.16 0.35 0.21 0.09 0.07 0.07 1.12 0.31 0.15 0.09 0.07 0.06

7 1.25 0.23 0.25 0.10 0.08 0.08 1.21 0.18 0.21 0.08 0.07 0.07

8 1.01 0.33 0.64 0.12 0.11 0.11 0.97 0.32 0.65 0.11 0.08 0.08

9 0.51 0.95 1.31 0.21 0.20 0.22 0.45 0.99 1.34 0.16 0.16 0.18

Decile pattern 

100 replications 

10 4.61 2.97 3.56 1.93 2.57 3.52 4.35 2.90 3.55 1.53 2.59 3.59

Total  10.75 6.04 7.03 2.81 3.31 4.27 10.31 5.88 6.95 2.28 3.21 4.23

1 0.63 0.17 0.16 0.28 0.14 0.15 0.64 0.17 0.16 0.28 0.14 0.14

2 0.22 0.09 0.11 0.24 0.13 0.13 0.23 0.08 0.10 0.24 0.12 0.13

3 0.12 0.11 0.13 0.07 0.06 0.06 0.11 0.10 0.12 0.06 0.04 0.04

4 0.40 0.16 0.16 0.07 0.06 0.06 0.40 0.15 0.16 0.07 0.05 0.05

5 0.74 0.23 0.20 0.13 0.09 0.09 0.73 0.20 0.18 0.12 0.07 0.07

6 1.07 0.29 0.21 0.16 0.11 0.10 1.03 0.25 0.17 0.15 0.09 0.09

7 1.19 0.23 0.17 0.17 0.12 0.13 1.13 0.17 0.13 0.14 0.11 0.11

8 1.00 0.26 0.37 0.22 0.15 0.17 0.93 0.22 0.40 0.18 0.13 0.15

Quintile pattern 

200 replications 

9 0.52 0.69 0.97 0.52 0.54 0.83 0.43 0.73 1.01 0.40 0.58 0.89

 10 4.23 2.58 2.99 2.19 2.33 2.90 3.89 2.52 3.06 1.81 2.33 3.02

Total  10.10 4.81 5.46 4.03 3.72 4.60 9.51 4.59 5.48 3.45 3.67 4.69

1 0.55 0.11 0.11 0.15 0.10 0.10 0.56 0.11 0.11 0.15 0.10 0.10

2 0.12 0.27 0.29 0.06 0.06 0.06 0.12 0.26 0.29 0.05 0.06 0.06

3 0.22 0.30 0.31 0.05 0.06 0.06 0.21 0.29 0.31 0.04 0.05 0.05

4 0.56 0.35 0.33 0.08 0.07 0.07 0.56 0.34 0.32 0.06 0.05 0.05

5 0.91 0.38 0.32 0.09 0.08 0.08 0.89 0.36 0.30 0.08 0.06 0.07

6 1.23 0.39 0.27 0.12 0.09 0.09 1.20 0.34 0.23 0.10 0.08 0.08

7 1.33 0.26 0.19 0.15 0.11 0.11 1.28 0.19 0.16 0.13 0.09 0.09

8 1.09 0.32 0.50 0.17 0.18 0.19 1.02 0.32 0.55 0.13 0.16 0.17

9 0.55 1.00 1.28 0.25 0.27 0.30 0.48 1.07 1.34 0.19 0.23 0.27

Quintile-TB 

pattern 

200 replications 

10 5.09 3.07 3.38 1.94 2.60 3.24 4.75 3.05 3.47 1.54 2.71 3.43

Total  11.65 6.43 6.97 3.06 3.61 4.29 11.05 6.34 7.07 2.49 3.58 4.34

1 0.58 0.12 0.11 0.15 0.10 0.09 0.59 0.12 0.11 0.15 0.09 0.09

2 0.15 0.22 0.24 0.04 0.04 0.04 0.16 0.21 0.24 0.03 0.03 0.03

3 0.17 0.25 0.24 0.04 0.04 0.04 0.15 0.24 0.23 0.04 0.03 0.03

4 0.49 0.29 0.24 0.05 0.05 0.05 0.49 0.29 0.23 0.05 0.04 0.04

5 0.84 0.33 0.23 0.07 0.06 0.06 0.82 0.31 0.21 0.06 0.05 0.05

6 1.16 0.35 0.21 0.09 0.07 0.07 1.12 0.31 0.16 0.09 0.06 0.06

7 1.27 0.25 0.24 0.10 0.08 0.08 1.21 0.18 0.21 0.08 0.07 0.07

8 1.05 0.31 0.60 0.13 0.11 0.11 0.98 0.30 0.63 0.11 0.09 0.09

9 0.54 0.93 1.28 0.21 0.20 0.21 0.46 0.98 1.32 0.16 0.16 0.18

Decile pattern 

200 replications 

 

10 4.70 2.95 3.51 1.91 2.51 3.43 4.36 2.91 3.54 1.54 2.59 3.57

aTotal  10.93 5.98 6.90 2.79 3.24 4.19 10.34 5.84 6.88 2.29 3.22 4.22
Note: LN = lognormal, SM = Singh-Maddala, GB = Generalized Beta; Prefix ‘A’ = adjusted data. 

Source: Authors’ calculations. 
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The six column headings in Table 2 refer to the results for the crude (Stage I) samples 
obtained from the lognormal (LN), Singh-Madalla (SM) and Generalized Beta (GB) 
distributions, plus the results (ALN, ASM and AGB, respectively) obtained after the 
samples are adjusted to match the group details in Stage II of the ungrouping algorithm. 
The first point to note is that the Stage II adjustment procedure proposed in this paper 
usually leads to a significant reduction in the errors. This is seen in Table 2 by 
comparing the deviations for the raw and adjusted samples, holding constant the sample 
size and grouping assumption. With very few exceptions the adjustment leads to a better 
match with the true income values, often reducing the average deviation by a factor of 
two or more. Table 2 also hints at an improvement in the match as the sample size 
increases from 1,000 to 2,000, although the improvement is not uniform, nor much in 
evidence when the Generalized Beta distribution is used. Raising the number of sample 
replications from 100 to 200 appears to have little effect, suggesting that the reported 
figures are close to their asymptotic values. 

Turning to the pattern across deciles, the results—particularly those for the adjusted 
sample values—show that the errors are heavily concentrated in the top decile and (to a 
lesser degree) in deciles 1-2 and deciles 8-9.12 In deciles 3-7, the synthetic income 
values closely match the true values. The impact of the grouping criterion seems less 
clear at first. Focusing on the columns corresponding to the unadjusted data, there is 
little evidence that errors diminish as the grouping pattern becomes less coarse. 
However, after the sample is adjusted, the absolute deviations decline most of the time 
as the grouping arrangement changes from quintiles to quintile-TB to deciles. 

Table 3: Total absolute deviations of income shares 

1000 observations 2000 observations 

Number of samples LN SM GB ALN ASM AGB LN SM GB ALN ASM AGB

             

 Quintile 

100 9.92 4.87 5.56 3.98 3.78 4.68 9.47 4.59 5.50 3.44 3.66 4.70

200 10.10 4.81 5.46 4.03 3.72 4.60 9.51 4.59 5.48 3.45 3.67 4.69

     

 Quintile-TB 

100 11.47 6.50 7.10 3.04 3.64 4.33 11.04 6.37 7.12 2.46 3.56 4.33

200 11.65 6.43 6.97 3.06 3.61 4.29 11.05 6.34 7.07 2.48 3.58 4.34

     

 Decile 

100 10.75 6.04 7.03 2.81 3.31 4.27 10.31 5.88 6.95 2.28 3.21 4.23

200 10.93 5.98 6.90 2.79 3.24 4.19 10.34 5.84 6.88 2.29 3.22 4.22

     

Note: LN = lognormal, SM = Singh-Maddala, GB = Generalized Beta; Prefix ‘A’ = adjusted data. 

Source: Authors’ calculations. 

 
                                                 

12 The proportional deviations may not be greatest in the top decile because the base values are larger. 
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The final issue concerns the choice of distribution function for the raw data sample. 
Here the result is a little surprising. The summary of Table 2 results reproduced in 
Table 3 demonstrates that before the Stage II adjustment, the lognormal is 
unambiguously the worst performer and Singh-Maddala performs the best. After the 
sample is adjusted, the Singh-Maddala form continues to dominate the Generalized Beta 
distribution. But the lognormal-based estimates improve so much that they overtake the 
Generalized Beta results in each of the twelve scenarios identified in Table 3. They also 
dominate Singh-Maddala in all situations except those corresponding to the coarsest 
grouping criterion (quintiles alone) and smallest sample size (1,000 observations). More 
surprisingly, perhaps, the disaggregated results in Table 2 show that the adjusted 
lognormal values provide particularly accurate values in the top decile. This is precisely 
the region where the lognormal is not expected to perform well; yet the lognormal 
dominates both of the other candidate distributions in every instance. 

It is not clear why the Stage II adjustment leads to such an exceptional improvement in 
the lognormal originated estimates. However our findings support the view that the 
ungrouping algorithm described above, coupled with an initial lognormal fit, is capable 
of reproducing sample data from grouped statistics with a high degree of accuracy. Our 
results also lead to the recommendation that the size of the synthetic sample should be 
chosen as large as possible, since the lognormal is unambiguously best in the runs with 
2,000 observations, and since increasing the size of the sample improves the data match 
in all circumstances. 

The second method of assessing the performance of the ungrouping algorithm using the 
CPS involves a comparison between the true inequality values and the estimates 
generated via the synthetic sample. Four inequality measures were used for this purpose, 
the Gini coefficient and three members of the entropy family: the mean logarithmic 
deviation (MLD) the Theil coefficient (T), and the squared coefficient of variation 
(CV2). For a sample of n observations xi (i = 1, … , n) with mean µ, these indices may 
be written, respectively, as 

 
1

1 ln
n

i i
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n x

μ
=

= ∑  
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Tables 4-7 report the mean absolute percentage error for each of these indices, using 
both the raw synthetic sample and the adjusted sample. The results for the Gini 
coefficient are very encouraging. Table 4 shows that the errors for the raw synthetic 
sample are usually 2-3 per cent (and higher still for the lognormal fit). However, the 
expected error for the adjusted samples never exceeds one per cent and falls below 0.1 
per cent for lognormal generated observations constructed from decile share 
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information. This translates into a confidence interval of around ±0.001 for the 
ungrouping estimates of a typical income Gini value (say, 0.4).  

Results for the three entropy indices are less satisfactory. The best that can be achieved 
with the Theil coefficient is about a 1 per cent error, which is reasonably acceptable (see 
Table 6). But the minimum expected error is 2.5 per cent for the squared CV (Table 7), 
and around 4 per cent for the MLD (Table 5).  

Table 4: Mean absolute percentage error: Gini coefficient 

Unadjusted data  Adjusted data 
Grouping pattern 

LN SM GB  ALN ASM AGB 

 
 

1000 sample observations, 100 replications 

Quintile 4.01 0.91 0.46  0.18 0.48 0.73 

Quintile-TB 6.53 3.24 2.31  0.10 0.19 0.28 

Decile 5.41 2.48 1.44  0.08 0.22 0.35 

 
 

1000 sample observations, 200 replications 

Quintile 4.07 0.97 0.52  0.20 0.47 0.71 

Quintile-TB 6.57 3.29 2.37  0.10 0.19 0.27 

Decile 5.47 2.56 1.54  0.08 0.22 0.35 

 
 

2000 sample observations, 100 replications 

Quintile 3.65 0.61 0.33  0.15 0.54 0.78 

Quintile-TB 6.17 2.95 2.07  0.11 0.22 0.30 

Decile 5.05 2.22 1.01  0.07 0.25 0.37 

 
 

2000 sample observations, 200 replications 

Quintile 3.65 0.62 0.36  0.15 0.55 0.78 

Quintile-TB 6.15 2.91 2.06  0.11 0.22 0.30 

Decile 5.04 2.20 1.00  0.08 0.25 0.37 

Note: LN = lognormal; SM = Singh-Maddala; GB = Generalized Beta. 

Source: Authors’ calculations. 

 

In some respects, the pattern of results in Tables 4-7 corroborates the conclusions drawn 
earlier from Tables 2 and 3. The Singh-Maddala derived data are better on every count 
than those obtained using the Generalized Beta distribution. The lognormal performs 
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poorly before the synthetic sample is adjusted, but improves greatly during Stage II of 
the algorithm, so much so that it leapfrogs above both the Singh-Maddala and 
Generalized Beta estimates, unless the mean logarithmic deviation is chosen as the 
inequality index. As regards the grouping arrangement, the estimates again tend to 
improve (for the adjusted data at least) as one moves from quintiles to quintile-TB to 
deciles, echoing the slightly ambiguous results obtained earlier. 

Table 5: Mean absolute percentage error: mean logarithmic deviation 

Unadjusted data  Adjusted data Grouping 

Pattern LN SM GB  ALN ASM AGB 

        

 1000 sample observations, 100 replications 

Quintile 17.66 10.82 11.24  15.32 11.57 12.01 

Quintile-TB 12.90 3.94 4.12  10.36 7.98 8.08 

Decile 15.03 5.93 6.91  10.30 8.02 8.10 

        

 1000 sample observations, 200 replications 

Quintile 17.47 10.58 10.99  15.12 11.35 11.78 

Quintile-TB 12.73 3.73 3.92  10.15 7.76 7.86 

Decile 14.85 5.64 6.59  10.09 7.79 7.88 

        

 2000 sample observations, 100 replications 

Quintile 18.23 11.30 11.63  15.35 11.65 12.05 

Quintile-TB 13.45 4.20 4.31  10.28 7.96 8.04 

Decile 15.59 6.27 7.01  10.22 8.00 8.06 

        

 2000 sample observations, 200 replications 

Quintile 18.07 11.14 11.46  15.20 11.49 11.90 

Quintile-TB 13.34 4.18 4.27  10.17 7.86 7.95 

Decile 15.46 6.21 6.92  10.13 7.90 7.97 

Note: LN = lognormal; SM = Singh-Maddala; GB = Generalized Beta. 

Source: Authors’ calculations. 
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Table 6: Mean absolute percentage error: Theil coefficient 

Unadjusted data  Adjusted data 
Grouping Pattern 

LN SM GB  ALN ASM AGB 

        

 1000 sample observations, 100 replications 

Quintile 10.19 1.95 3.85 1.42 3.70 5.32

Quintile-TB 16.52 3.53 2.26 0.95 2.66 3.57

Decile 13.69 2.91 4.05 0.95 2.59 3.86

   

 1000 sample observations, 200 replications 

Quintile 10.48 2.00 3.71 1.52 3.60 5.22

Quintile-TB 16.78 3.83 2.46 0.96 2.60 3.49

Decile 13.96 3.18 4.05 0.96 2.53 3.78

   

 2000 sample observations, 100 replications 

Quintile 8.78 2.41 4.65 1.15 4.19 5.67

Quintile-TB 15.05 2.55 1.68 0.84 2.99 3.79

Decile 12.24 1.94 3.98 0.84 2.90 4.01

   

 2000 sample observations, 200 replications 

Quintile 8.78 2.46 4.62 1.15 4.21 5.68

Quintile-TB 14.97 2.59 1.82 0.88 3.00 3.80

Decile 12.20 2.03 4.03 0.88 2.92 4.02

Note: LN = lognormal; SM = Singh-Maddala; GB = Generalized Beta. 

Source: Authors’ calculations. 
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Table 7: Mean absolute percentage error: squared coefficient of variation 

Unadjusted data  Adjusted data 
Grouping Pattern 

LN SM GB  ALN ASM AGB 

        

 1000 sample observations, 100 replications 

Quintile 26.03 6.93 13.14 5.86 9.64 14.53

Quintile-TB 36.89 5.94 11.26 3.92 8.69 11.91

Decile 31.97 6.74 16.17 3.80 8.29 12.72

    

 1000 sample observations, 200 replications 

Quintile 26.91 6.71 12.78 6.35 9.40 14.30

Quintile-TB 37.75 5.93 10.85 4.04 8.50 11.69

Decile 32.84 6.65 15.65 3.90 8.09 12.49

    

 2000 sample observations, 100 replications 

Quintile 21.61 8.90 15.07 3.68 11.37 15.76

Quintile-TB 31.90 6.51 12.90 2.48 10.03 12.81

Decile 27.24 7.55 17.15 2.48 9.56 13.36

    

 2000 sample observations, 200 replications 

Quintile 21.50 9.00 15.06 3.58 11.50 15.85

Quintile-TB 31.67 6.83 12.88 2.53 10.12 12.88

Decile 27.06 7.76 17.05 2.53 9.64 13.42

Note: LN = lognormal; SM = Singh-Maddala; GB = Generalized Beta. 

Source: Authors’ calculations. 

 

The most surprising feature of Tables 5-7 is the fact that the Stage II adjustment to the 
synthetic sample does not always improve the accuracy of the estimate of inequality. 
Indeed, for the Singh-Maddala and Generalized Beta distributions, the adjustment raises 
the mean absolute percentage error in every case reported for the MLD index in Table 5, 
and in most cases recorded for the Theil coefficient in Table 6 and for the squared CV 
in Table 7. In contrast, the Stage II adjustment always improves the accuracy of the 
lognormal based estimates, quite dramatically in the case of the Theil coefficient values 
in Table 6. 
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The post adjustment deterioration in the predictive accuracy of the Singh-Maddala and 
Generalized Beta synthetic samples is unanticipated and not easy to comprehend, since 
the general tendency for an improvement during Stage II was documented earlier in 
Table 2. To explore the possible explanations, some specific sets of synthetic 
observations were examined, before and after adjustment. Figure 1 illustrates one 
(inevitably unrepresentative) sample obtained by applying the Singh-Maddala 
distribution to quintile groups. The graph—which plots the deviation of the synthetic 
Lorenz curve from the true Lorenz curve—shows the general improvement (and the 
exact quintile share match) resulting from the Stage II adjustment. But the ranking of 
the pre- and post-adjustment samples is less clear in the top quintile, precisely the place 
where the greatest inaccuracies occur. In particular, note that the top quintile Lorenz 
values for the adjusted sample always exceed the true values, but the deviations for the 
unadjusted sample can be negative or positive, allowing the possibility that the negative 
deviations offset the general tendency to underestimate inequality in the top quintile.13  

 

Figure 2 examines the implications for estimates of the squared coefficient of variation 
by plotting the partial sum of the expression given in equation (8), in other words  

(9) partial squared CV  = 
2

1

1 1
k

i

i

x
n μ=

⎧ ⎫⎛ ⎞⎪ ⎪−⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∑ ,    k = 1, … , n. 

The pattern is broadly similar to that depicted in Figure 1. The Stage II adjustment 
improves the accuracy of the partial squared CV for most of its range. But it is the errors 
in the uppermost tail that determine the accuracy of the overall squared CV value, and 
here the superiority of the post adjustment sample is not established unequivocally. 
Indeed, the fact that the Stage II adjustment magnifies the underestimate of the very 
richest incomes is the most likely explanation why the unadjusted Singh-Maddala 
sample is a better predictor of the squared CV. For lognormal based samples the 
adjustment always tends to improve the inequality estimates, so this anomaly does not 
arise, providing further grounds for favouring lognormal based samples, despite the well 
known deficiencies of the lognormal distribution as a representation of observed income 
distributions. 

 

                                                 

13 The inequality bias occurs because the incomes of the super rich are underestimated, as is evident in 
the the sharp decline in the deviation from the true Lorenz curve at the very top of the distribution. 
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Figure 1: Deviation from true Lorenz curve 

 

 
 

Figure 2: Deviation of partial squared coefficient of variation 

 

 
 

 



 22

4 Summary and conclusion 

Despite the increasing availability of survey data, poverty and inequality analysts are 
often confronted with the need for individual income observations when only grouped 
data are either accessible or affordable. As a result, there is a continuing demand for 
algorithms than can generate synthetic samples of observations from grouped 
information, as demonstrated by the popularity of the POVCAL program offered by the 
World Bank. 

This paper proposes an alternative method of reconstructing individual income 
observations from grouped distributional data. It involves two stages, first fitting a 
parametric Lorenz curve or distribution function to the grouped data, then adjusting the 
raw data generated by the fitted function. The procedure has two major virtues: it 
ensures that the characteristics of the synthetic sample exactly match the reported group 
values; and it is universally applicable in the sense of being able to handle any feasible 
pattern of grouped data. Our method also has the advantages of speed and simplicity. 

Using individual income records drawn from the CPS data, our method was tested by 
comparing the true values of individual observations with their synthetic counterparts. 
The results clearly demonstrate the superiority of the final adjusted sample, the 
adjustment leading to a better match with individual incomes in the vast majority of 
cases. Relative to the raw data, the adjustment often reduces the average deviation by a 
factor of two or more. 

Comparison between the true and generated values of inequality indices provides a 
second way of assessing our proposed algorithm. In this respect, results for the Gini 
coefficient are rather encouraging. The expected error never exceeds one per cent and 
falls below 0.1 per cent for lognormal generated observations constructed from decile 
share information, which translates into a confidence interval of around ±0.001 for 
estimates of a typical income Gini value (say, 0.4). Results for a selection of entropy 
indices are less good, but still satisfactory. Needless to say, the performance of the 
method improves as the grouping pattern becomes finer, changing from quintiles to 
quintiles plus the top and bottom deciles, and then to deciles. 

As regards the parametric function used to generate the raw sample, the Beta and 
General Quadratic Lorenz functions employed in POVCAL and by Datt and Ravallion 
(1992) are deficient in one major respect: most of the synthetic samples contain one or 
more negative observations despite the fact that CPS income observations are always 
positive. Among the remaining candidates, the lognormal form is the clear winner in our 
test results after the Stage II adjustment has been implemented. Compared to samples 
derived from the Singh-Maddala or Generalized Beta distributions, the lognormal based 
observations are consistently closer to the true values, and ensure more accurate 
estimates of most inequality indices. 

On the basis of our findings, we conclude that our proposed adjustment procedure, 
coupled with an initial lognormal fit and a sample size of at least 1000, is capable of 
reproducing individual data from grouped statistics with a high degree of accuracy. 
However we encourage others to subject our algorithm to further tests, using alternative 
sources of micro data (for example, the Luxembourg Income Study) and using 
alternative functional forms to generate the raw sample observations. 
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