UNITED NATIONS

Working Paper No. 2011/44

Aid Effectiveness

Opening the Black Box

Channing Arndt, ${ }^{1}$ Sam Jones, ${ }^{2}$ and Finn Tarp ${ }^{1}$

August 2011

Abstract

Controversy over the aggregate impact of foreign aid has focused on reduced form estimates of the aid-growth link. The causal chain, through which aid affects developmental outcomes including growth, has received much less attention. We address this gap by: (i) specifying a structural model of the main relationships; (ii) estimating the impact of aid on a range of final and intermediate outcomes; and (iii) quantifying a simplied representation of the full structural form, where aid impacts on growth through key intermediate outcomes. A coherent picture emerges: aid stimulates growth and reduces poverty through physical capital investment and improvements in health.

Keywords: growth; foreign aid; aid effectiveness; simultaneous equations
JEL classification: C23, O1, O2, O4

Copyright © UNU-WIDER 2011

1 University of Copenhagen and UNU-WIDER; e-mail: channingarndt@gmail.com, tarp@wider.unu.edu;
2 University of Copenhagen, e-mail: esamjones@gmail.com
This working paper has been prepared within the UNU-WIDER project 'Foreign Aid: Research and Communication (ReCom)', directed by Tony Addison and Finn Tarp. UNU-WIDER gratefully acknowledges specific programme contributions from the governments of Denmark (Ministry of Foreign Affairs, Danida) and Sweden (Swedish International Development Cooperation Agency-Sida) for the Research and Communication (ReCom) programme. UNU-WIDER also acknowledges core financial support to UNU-WIDER's work programme from the governments of Finland (Ministry for Foreign Affairs), the United Kingdom (Department for International Development), and the governments of Denmark and Sweden.

Acknowledgements

The authors would like to acknowledge very helpful comments and advice from Alan Winters, Henrik Hansen and the participants at the Nordic Conference in Development Economics (NCDE) held in Copenhagen 20-21 June 2011. The usual caveats apply.

The World Institute for Development Economics Research (WIDER) was established by the United Nations University (UNU) as its first research and training centre and started work in Helsinki, Finland in 1985. The Institute undertakes applied research and policy analysis on structural changes affecting the developing and transitional economies, provides a forum for the advocacy of policies leading to robust, equitable and environmentally sustainable growth, and promotes capacity strengthening and training in the field of economic and social policy making. Work is carried out by staff researchers and visiting scholars in Helsinki and through networks of collaborating scholars and institutions around the world.
www.wider.unu.edu publications@wider.unu.edu

UNU World Institute for Development Economics Research (UNU-WIDER)
Katajanokanlaituri 6 B, 00160 Helsinki, Finland
Typescript prepared by the authors.
The views expressed in this publication are those of the author(s). Publication does not imply endorsement by the Institute or the United Nations University, nor by the programme/project sponsors, of any of the views expressed.

1 Introduction

Not a month goes by without some bad news about foreign aid in the press. Examples of incompetence, abuse of funds, and distorted incentives abound. These stories, coupled with methodological challenges, fuel scepticism about aid's effectiveness. ${ }^{1}$ Moreover, Bourguignon and Sundberg (2007) identify a common perception that the causal chain from aid to development remains something of a 'black box'. This assessment is troubling given the large amounts of foreign aid that donors have directed towards the Millennium Development Goals (MDGs) over the past two decades, which target milestones in inter alia poverty, primary education and health. Alongside other intermediate outcomes, such as investment, these are regularly seen as mechanisms through which aid can affect growth. However, if causal links are poorly understood, then channelling aid toward these areas may be misguided.
The main objective here is to address the challenge of unpacking aid effectiveness. We focus on identifying mechanisms and decomposing transmissions channels from aid to outcomes. As such, the issue of causality must be addressed carefully. To do so, we take guidance from the Structural Causal Model (SCM), due to Pearl (2009) and others, which advocates a sequenced approach to causal analysis. In our application, we set out a general structural model which is consistent with the empirical growth literature, we define the target effects of interest, and we show how these effects can be identified from observational data. We pursue the empirical analysis in a series of steps: we (i) calculate reduced form estimates of the impact of aid on a range of final outcomes (growth, poverty, inequality and structural change); (ii) apply the same reduced form approach to a set of intermediate outcomes (investment, consumption and a variety of social indicators); and (iii) quantify a simplified representation of the full structural form, where aid impacts on growth through key intermediate outcomes. Practical application of the SCM framework in the context of a long-run cross-section methodology and relying on external supply-side instruments for aid represent important distinctions and contributions of the present exercise.

Our interest in transmissions channels is also important in itself. First, in many low income countries, a large share of aid is provided as sector-wide or general budget support. Accordingly, the object of evaluation must be national strategies which typically target meso-level indicators (e.g., raising primary school enrolment). Second, many intermediate outcomes are valued regardless of their contribution to growth. Access to 'merit goods', such as basic health care, primary education and potable water, can be viewed as human rights; and food aid is regularly provided to save human lives, not to promote economic growth. Third, although a number of previous studies have investigated the effect of aid on outcomes other than growth, they neither share a systematic methodology nor do they typically 'join up' effects at the mesoand macro- levels. Fourth, quantifying transmission channels provides a coherence test for the aid-growth relation. If no robust evidence for a relationship can be found between aid and various intermediate outcomes, then the impact of foreign aid on growth is likely to be negligible or at least becomes harder to explain.

The rest of this paper is structured as follows. Section 2 sets out the methodology and data used to guide causal inference; Section 3 presents the results; Section 4 discusses their economic significance and relevance; and Section 5 concludes. Overall a coherent picture emerges - aid has promoted structural change, stimulated growth, and reduced poverty. These effects are

[^0]attributed to the channels of health and physical capital investment. We also find that aid has had a positive effect on education outcomes; however, the subsequent growth effects of education appear ambiguous. Using more recent data, these findings confirm the estimates of the overall aid-growth relationship due to Arndt et al. (2010a). The links between growth and physical capital investment, as well as health, are in line with other recent studies (e.g., Hansen and Tarp 2001). We find no evidence that aid has had an overall detrimental effect on development outcomes.

2 Methodology

2.1 Causal framework

A variety of approaches have been developed, often in separate literatures, to address questions of causality. For example, the potential outcomes approach associated with the contributions Donald Rubin (e.g., Rubin 1974), is rooted in concepts of (as if) randomization. This is useful in certain situations, particularly when an experimental element determines units' treatment status. However, in observational settings, this does not provide clear guidance as to channels of impact and/or exactly what effects will be estimated under different sets of conditioning variables (see Heckman 2008; Pearl 2010). These concerns are pertinent as we wish to unpack the effects of aid through multiple intermediary variables.

To address questions of causality in a clear and rigorous fashion, we adopt the Structural Causal Model (SCM) due to Pearl (2009) and others. Two aspects of this approach deserve mention. First, it presumes the causal relation of interest can be depicted as a directed acyclic graph (DAG), in which variables are connected by a network of directed edges (paths), meaning that the joint probability distribution of the network can be factorised into the product of conditional probability distributions. ${ }^{2}$ In turn, the correlation between any two variables, X and Y, can be stated as a function of individual effects (parameters or coefficients) that constitute the paths connecting X and Y. Following Brito and Pearl (2006), this is given as:

$$
\begin{equation*}
\rho_{X, Y}=\sum_{\text {paths } p_{j}} T\left(p_{j}\right) \tag{1}
\end{equation*}
$$

where $T\left(p_{j}\right)$ represents the product of all parameters along path p_{j}, and the summation ranges over all unblocked paths (see below) between X and Y. Thus, different causal effects, including conditional/unconditional and direct/indirect effects, can be decomposed as functions of path coefficients.

The second aspect of the SCM is a graphical condition for causal identification in the presence of unmeasured confounders or correlated errors, known as the 'backdoor criterion'. This points to an admissible set of variables which, if adjusted upon, removes all sources of potential bias in the estimated causal effect. With respect to the causal effect of X on Y, this set is defined by (Pearl 2010: 17-18), as:

Definition 1. A set S is admissible or 'sufficient' for adjustment if: (i) no element of S is a descendant of X; and (ii) the elements of S 'block' all paths that end with an arrow pointing to X - i.e., all 'back-door' paths from X to Y are blocked.

[^1]Figure 1: General causal diagram summarising the linkages between aid and final outcomes

Notes: figure is a causal directed acyclic graph (DAG) of the relationship between aid (W) and aggregate outcomes (Z), via intermediate outcomes $(Y) ; V$ is an exogenous determinant of aid; U terms are unobserved, possibly errors; solid lines represent directed relationships between observed variables; broken lines represent directed relations due to unobserved variables (errors).
and where the notion of blocking is defined in (Pearl 2010: 8), as:
Definition 2. A set S of nodes is said to block a path p if: either (i) p contains at least one arrow-emitting node that is in S; or (ii) p contains at least one collision node that is outside S and has no descendant in S.

Thus, in the SCM framework, the causal effect of X on Y can be estimated if an admissible set is observed such that all backdoor paths from X to Y can be blocked by adjusting on this set. ${ }^{3}$

2.2 Application to foreign aid

In applying the SCM to unpacking aggregate aid effectiveness, it is necessary to generalize the aid-growth effect to encompass sets of both final and intermediate outcomes. The former are distinguished by the subscript n, thus defining the set \mathbf{Z} of final outcomes with elements $Z_{1}, Z_{2}, \ldots, Z_{N}$. In similar fashion, we define the set \mathbf{Y} of intermediate outcome variables with elements Y_{m} and its subset $\mathbf{Y}^{\mathbf{m}^{\prime}}$, which includes all elements of \mathbf{Y} excluding the single element Y_{m}; i.e., $\mathbf{Y}^{\mathbf{m}^{\prime}} \subset \mathbf{Y}=\left\{y: y \in \mathbf{Y}, y \neq Y_{m}\right\}$.
With this notation, Figure 1 sets out the presumed DAG, representing a primal model of the aidfinal outcome relationship. Solid lines represent directed relationships between observed variables, depicted by the nodes (circles); broken lines represent effects emanating from unobserved variables, which can be thought of as error terms. According to the figure we also presume there exists a variable V, which is a parent (ancestor node) of aid (W) and has an error structure that is unrelated to the error structure of any other variables, indicated by the absence of arcs to (unobserved) error terms.

The next step is to explicate the effects to be estimated. The aid-growth debate focuses on a single target effect - the causal effect of aid on GDP growth. Employing the notation of

[^2]Pearl (2009), this can be expressed as $\partial / \partial w E[G \mid d o(w), \mathbf{x}]$, where G is the outcome of interest, and $\mathbf{X}^{\prime}=\left[\begin{array}{ll}\mathbf{X}_{\mathbf{1}} & \mathbf{X}_{\mathbf{2}}\end{array}\right]$ is a set of exogenous background variables. The $d o(\cdot)$ operator is used to denote the effect of a physical intervention or manipulation. This is conceptually distinct from statistical conditioning, such as stratification or inclusion on the RHS of a regression, but may be empirically equivalent under certain conditions (Pearl 2010).

Taking guidance from Figure 1, we can distinguish between four relevant types of effects for chosen elements of \mathbf{Y} and \mathbf{Z} :
(E1) Total effect of W on $Z_{n}=\partial / \partial w E\left[Z_{n} \mid d o(w), \mathbf{x}\right]$
(E2) Total effect of W on $Y_{m}=\partial / \partial w E\left[Y_{m} \mid d o(w), \mathbf{x}\right]$
(E3) Direct effect of W on $Y_{m}=\partial / \partial w E\left[Y_{m} \mid d o(w), d o\left(\mathbf{Y}^{\mathbf{m}^{\prime}}\right), \mathbf{x}\right]$
(E4) Total effect of Y_{m} on $Z_{n}=\partial / \partial Y_{m} E\left[Z_{n} \mid d o\left(Y_{m}\right), \mathbf{x}\right]$
Effects E1 and E2 are straightforward replications of the aid-growth effect, employing alternative final or intermediate outcomes. These effects are also 'total' as they capture all open paths running from W to the chosen outcome, regardless of the mediating variables involved. While of general interest, such estimates are not sufficient to quantify the individual effect of a chosen intermediate variable on a given final outcome, which is required to decompose aid effectiveness into its constituent channels. Rather, following the path decomposition property of DAGs, we first need an estimate of the direct effect of aid on the chosen intermediate outcome, excluding effects transmitted via other intermediate variables that causally precede the chosen Y_{m}. This is given by effect E3, which includes the additional term $d o\left(\mathbf{Y}^{\mathbf{m}^{\prime}}\right)$. Next, we require the total effect of Y_{m} on Z_{n}, given by effect E4. The product of E3 and E4 yields the decomposition of interest.

Before proceeding, it is worth noting that DAGs have a corresponding (non-parametric) structural equation representation. That is, assuming the functions are autonomous, Figure 1 corresponds to equations (2) to (5) below. From this it is evident that the model is entirely consistent with the empirical growth regression literature. For example, from equation (5), aggregate GDP growth $(G \in \mathbf{Z})$ can be represented by the function: $g=f_{G}\left(\mathbf{x}, \mathbf{y}, u_{G}\right)$. Ignoring the error term, this maps directly to the standard equation derived from a log linearization of an aggregate production function around its steady state, which defines growth as a function of initial and steady state income (Mankiw et al. 1992). As a result, \mathbf{X} can be seen as containing initial income and other fixed factors that affect long-run productivity, while \mathbf{Y} contains proximate factors, such as the rate of saving in human and physical capital, which also affect steady state income.

$$
\begin{gather*}
v=f_{V}\left(\mathbf{x}, u_{V}\right) \tag{2}\\
w=f_{W}\left(v, \mathbf{x}, u_{W}\right) \tag{3}\\
y_{m}=f_{Y}\left(w, \mathbf{x}, u_{Y_{m}}\right) \tag{4}\\
z_{n}=f_{Z}\left(\mathbf{y}, \mathbf{x}, u_{Z_{n}}\right) \tag{5}\\
E\left[u_{V} u_{j}\right]=0 \forall j \in J=\left\{W, Y_{1}, Z_{1}, \ldots, Y_{M}, Z_{N}\right\} \\
E\left[u_{j} u_{k}\right] \neq 0 \forall j, k \in J .
\end{gather*}
$$

2.3 Identification

Effects E1 and E2

The DAG of Figure 1 provides a sufficient and general basis to determine whether the previously defined target effects can be identified. The immediate issue is that neither effects E1 or E2 can be identified directly. Following Section 2.1, we note the existence of backdoor paths such
as $W \leftrightarrow U_{W} \rightarrow U_{Y} \longrightarrow U_{Z} \rightarrow Z_{n}$, which could reflect omitted variables bias, or some form of simultaneity. As these paths contain unobserved variables, the set of observed controls (X) is not sufficient for adjustment, meaning that in the absence of randomization of aid, simple estimates of either E1 or E2 (controlling for \mathbf{X}) will be biased - i.e., aid must be considered 'endogenous'.

Nonetheless, given the assumptions encoded in the DAG, we see that \mathbf{X} is admissible to identify the causal effect of V on any one of W, Y_{m} or Z_{n}; that is $U_{V} \Perp U_{W}, U_{Y}, U_{Z} \mid \mathbf{X}$. Again employing the path decomposition property of the DAG (see equation 1), effects E1 and E2 thus can be recovered indirectly as the ratio of causal effects due to V. However, as noted by Balke and Pearl (1997), this is only feasible with the additional assumption that the underlying functional forms are linear, such that error terms are additive. This can be seen algebraically by taking the reduced form associated with equations (4) and (5):

$$
\begin{align*}
z_{n} & =f_{z}\left(\mathbf{y}, \mathbf{x}, u_{Z}\right) \\
& =f_{Z}\left(\left[f_{Y}\left(w, \mathbf{x}, u_{Y_{1}}\right), \ldots, f_{Y}\left(w, \mathbf{x}, u_{Y_{M}}\right)\right], \mathbf{x}, u_{Z}\right) \\
& =\sum_{m=1}^{M} \alpha\left[\beta_{1 m} w+\mathbf{x}^{\prime} \beta_{2 m}+u_{Y_{m}}\right]+\mathbf{x}^{\prime} \gamma+u_{Z} \\
& =\tilde{\lambda} w+\mathbf{x}^{\prime} \tilde{\mu}+\tilde{u} \tag{6}
\end{align*}
$$

where the tilde superscripts denote aggregated parameters. Multiplying (6) through by V, taking expectations and rearranging, then yields an instrumental variables estimand: $\mathrm{E} 1=\operatorname{Cov}\left(V, Z_{n} \mid\right.$ $X) / \operatorname{Cov}(V, W \mid X)$. Effect E2 can be estimated analogously: $\mathrm{E} 2=\operatorname{Cov}\left(V, Y_{m} \mid X\right) / \operatorname{Cov}(V, W \mid$ $X)$.

Effects E3 and E4

In contrast to E1 and E2, neither of effects E3 or E4 are easily identifiable even if aid were to be randomized. This is driven by the (likely) existence of interaction between intermediate variables, illustrated in Figure 2 for the case of two intermediaries and one final outcome. As can be seen from the definitions in Section 2.2, effect E3 is a restriction on E2, implying the former can be estimated by blocking (closing) paths running through other intermediate variables. Importantly, this cannot always be achieved by conditioning on the set $\mathbf{Y}^{\mathbf{m}^{\prime}}$. For instance, from the figure, to estimate $\mathrm{E} 3\left(Y_{2}\right)$ it is appropriate to include Y_{1} in the conditioning set thereby closing the 'frontdoor' path $W \rightarrow Y_{1} \rightarrow Y_{2}$. In contrast, it is incorrect to condition on Y_{2} if we wish to estimate E3 $\left(Y_{1}\right)$. This is not only because Y_{2} is a collider ($W \rightarrow Y_{2} \leftarrow Y_{1}$), making it redundant, but principally because the act of conditioning on a collider can introduce additional bias; that is, it violates the backdoor criterion (Definition 2, condition (ii); Cole et al. 2010). ${ }^{4}$ The implication is that either we must be able to externally manipulate (e.g., randomize) all intermediate variables in the set $\mathbf{Y}^{\mathbf{m}^{\prime}}$, thereby severing their connection to aid; or, the structure of interaction between the elements of \mathbf{Y} must be known, allowing an admissible set to be selected. ${ }^{5}$ Thus, how the endogeneity of aid is addressed is irrelevant to this aspect of the identification problem.

Recovery of effect E4 faces similar difficulties. As indicated by Figure 1, correlation between the error terms $\left(U_{Y}, U_{Z}\right)$ means that estimation must proceed indirectly as with effects E1 and

[^3]Figure 2: Simplified causal diagram summarising the linkages between aid and a single final outcome

Notes: figure is a simplified version of Figure 1 including a presumed interaction structure between intermediate variables; X_{1} and error terms (U) follow Figure 1 but are omitted here for clarity.

E2. However, use of V (or randomized aid) as a suitable instrument is problematic. This can be seen from Figure 2, where the total effect of Y_{1} on Z_{n} is given by the set of frontdoor paths $\left\{Y_{1} \rightarrow Z_{n}, Y_{1} \rightarrow Y_{2} \rightarrow Z_{n}\right\}$. However, to employ V as a valid instrument for Y_{1}, we must include Y_{2} in our adjustment set - i.e., it is necessary to control for all other intermediate variables for which there exists a frontdoor path connecting the instrument and elements of $\mathbf{Y}^{\mathbf{m}^{\prime}}$. However, following Definition 2, this blocks the causal path $V \rightarrow W \rightarrow Y_{1} \rightarrow Y_{2} \rightarrow Z_{n}$, meaning that only the direct effect of Y_{1} on Z_{n} would be identified. According to the figure, and aside from externally manipulating \mathbf{Y}, an appropriate solution would be to use $\mathbf{X}_{\mathbf{2}}$ as a set of exogenous instruments for Y_{1} and Y_{2}. This introduces two additional requirements. First, order conditions must be met - i.e., we need at least as many elements in $\mathbf{X}_{\mathbf{2}}$ (instruments) as there are elements of \mathbf{Y}. Second, unless all elements of $\mathbf{X}_{\mathbf{2}}$ are pairwise orthogonal (and relevant), estimation of effect E 4 for multiple intermediate variables must be undertaken in one equation, rather than separately. In the case of Figure 2, a single instrumental variables (IV) regression equation, in which both Y_{1} and Y_{2} are treated as endogenous conditional on \mathbf{X}_{1}, would yield consistent estimates of E 4 for these two intermediate variables.

As an aside, it is worth noting that in the special case of no interaction between intermediate variables (i.e., $\left.Y_{l} \Perp Y_{m} \mid W, X \forall l \neq m\right), V$ could be used as a source of exogenous variation to identify the total effect of Y_{m} on Z_{m} conditional on $\mathbf{Y}^{\mathbf{m}^{\prime}}$. However, a likely practical problem is that the aid instrument will be relatively weak because it is not a direct parent of Y_{m}. As a result, it still may be preferable to seek alternative sources of exogenous variation in Y_{m}, and use these in place of the aid instrument. The latter approach also has the advantage of being robust to misspecification of the control set $\mathbf{Y}^{\mathbf{m}^{\prime}}$.

Finally, Figures 1 and 2 suggest a falsification test. Given the Markovian properties of the assumed DAG (see Sections 2.1 and 2.2), it follows that $V \Perp Z \mid Y, X_{1}$. In practical terms, we should expect the aid instrument (or an instrumented measure of aid) to be redundant if included as a control variable in estimates of effect E4. If not, then the model is likely to be misspecified; in particular, this would arise if material elements of \mathbf{Y} have been neglected.

2.4 Estimation strategy

The previous sub-sections suggest that estimation should proceed in two steps. The first is to estimate the reduced forms E1 and E2 for a relatively wide range of variables. While interesting in itself, this can also be considered a form of exploratory analysis, which informs the second step - estimating effects E3 and E4. Here, due to the need to identify multiple endogenous variables, a more manageable subset of \mathbf{Y} and \mathbf{Z} is chosen, thereby constituting a simplified causal system. The latter step proceeds by selecting additional instrumental variables for the chosen intermediate variables, and applying both single-equation and systems IV estimators.

Choice of relevant and valid instruments in both stages is hardly trivial. Regarding the aid instrument, given the set of conditioning variables is fixed across different outcomes, the relation between the instrument and aid remains the same (as per a first stage regression) - i.e., instrument strength is unchanged. Nonetheless, because the instrument is derived from observational data, and the 'true' set of pre-treatment conditioning variables that block all paths between the instrument and outcomes is unknown, there is no guarantee that the instrument is equally valid in all cases. Put differently, as the instrument is not randomized there may be some outcome for which U_{V} is not independent of U_{Y} or U_{Z}. Consequently, a metric of instrument validity would be valuable. This relates to the problem of instrument selection. Here we take Arndt et al. (2010a) (hereafter AJT10) as our point of departure, being the latest contribution to the aid-growth literature and which is an improvement on the empirical strategy developed in Rajan and Subramanian (2008). In both studies, the authors generate an external instrument for aid from a model of its supply-side determinants at the donor-recipient level. Predicted aid receipts from this model are aggregated upwards to give a total predicted aid inflow for each country over a specified period. We adopt the same approach as in AJT10, using an extended dataset covering the period 1970-2007.

Generation of a single instrument for aid means that over-identification tests cannot be employed. To address this, we also replicate the procedure in AJT10 whereby aggregated versions of the supply-side variables used to estimate the aid instrument are employed directly as instruments in (aggregate-level) aid-growth regressions. While a relatively large number of aggregated instruments could be used, we opt for a critical subset of these - relative population sizes, a colony dummy and their interaction. Subsequent Hansen/Sargan tests deriving from the same IV regressions as above, but now using the disaggregated instrument set, thus give some insight as to instrument validity.

Choice of instruments for the intermediate variables in the systems estimates also is not straightforward. Moreover, guidance from the literature is less clear. Following related exercises concerned with identifying macroeconomic transmission channels (e.g., Tavares and Wacziarg 2001; Baldacci et al. 2004), a first approach to instrument selection is to impose (valid) exclusion restrictions on the aggregate conditioning set \mathbf{X} (also Greene 2002). This is suggested in Figures 1 and 2 , where $\mathbf{X}_{\mathbf{2}} \subset \mathbf{X}$ only affects final outcomes via intermediate variables. Thus, for the system estimates, a set $\mathbf{X}_{\mathbf{2}}$ is employed as excluded instruments for intermediate variables, and $\mathbf{X}_{\mathbf{1}} \subset \mathbf{X}$ is used as a standard conditioning set across all equations. The latter approach presumes that \mathbf{X} can be appropriately partitioned and that $\operatorname{dim}\left(\mathbf{X}_{\mathbf{2}}\right) \geq \operatorname{dim}\left(\mathbf{Y}^{\mathbf{m}^{\prime}}\right)$. As discussed in Section 3.2 , in the present exercise the latter requirement only holds with equality, meaning that overidentification tests cannot be employed. Thus, in addition to partioning \mathbf{X}, we introduce a small number of other pre-treatment variables as additional excluded instruments for $\mathbf{Y}^{\mathbf{m}^{\prime}}$, chosen in light of theoretical relevance and previous literature (also Tavares and Wacziarg 2001). This yields an expanded instrument set $\mathbf{R}=\left[\begin{array}{ll}\mathbf{R}_{\mathbf{1}} & \mathbf{X}_{\mathbf{2}}\end{array}\right]$ (see Appendix A for further details).

With respect to E3 and E4, added complication is due to our interest in structural parameters and possible interactions between intermediate variables. Although single-equation instrumental variables (IV) estimates of each equation of the system are expected to be consistent, they are likely to be inefficient as they ignore correlation of cross-equation disturbances. Thus, gains may be realised from combining a given single-equation estimator with the feasible GLS approach to estimating stacked equations due to Zellner (1962). In the case of OLS, this gives the seemingly unrelated regressions (SUR) estimator; in the case of 2SLS, this gives the 3SLS estimator. Adopting systems methods is especially important with respect to effect E3. Although, for simplicity, in the underlying regressions for each intermediate variable we do not include other intermediates on the RHS (i.e., we assume there is no direct interaction between the elements of \mathbf{Y}), by proceeding with a simultaneous estimation of the system, residual cross-equation correlation is addressed. In the absence of a priori knowledge of the interaction structure, this constitutes an imperfect but practical approach to recovering E3.

It is worth remarking that although the need to employ an instrument for aid is widely acknowledged with respect to estimating the aid-growth relation, it may be the case that aid is exogenous in relation to other final/intermediate outcomes. If so, although IV estimators will remain consistent (assuming the instrument is valid), standard OLS regressions will be both consistent and efficient. The same rationale applies to the relation between intermediate and final outcomes. Consequently, and for simple comparative reasons, we present results for both OLS and IV estimators throughout. For the latter, unless otherwise discussed, we use the Limited Information Maximum Liklihood (LIML) estimator.

Finally, there is the question of the time period over which causal effects are to be estimated. A large part of the (modern) aid-growth literature has employed panel data, focussing on relatively short term effects of up to 5 years. In contrast, as per Rajan and Subramanian (2008) and Arndt et al. (2010a), there are good reasons to dispense with dynamic specifications because the impact of much developmental aid is likely to be cumulative and long-term in nature (also Clemens et al. 2004; Temple 2010). Thus, we focus only on effects over long time frames (1970-2007), given by the average of variables over this period. For pre-treatment background variables we use starting period values (i.e., 1970) or the closest available data point if unavailable. Issues of variable selection and measurement are taken up below.

2.5 Variable selection and measurement

The final methodological issue refers to selection and measurement of macroeconomic variables. With respect to the measure of aid, given we intend to investigate a range of intermediate outcomes, it might seem appropriate to employ sector-specific or narrower measures of aid (e.g., Clemens et al. 2004). However, this has its drawbacks. Aside from sheer measurement error, there are substantial difficulties in linking aid in a given sector to outcomes in the same sector. Sector-specific measures of aid also are problematic due to difficulties in attributing multi-sector funds to individual sectors, as well as the fact that OECD-DAC data regarding aid disbursements is only available at the sector level for a small number of recent years. Moreover, there is no guarantee that the strategy used to develop instruments for aggregate aid will perform well for narrower measures. Thus, we use aggregate measures of aid throughout.

Turning to final and intermediate outcomes, a vast range of candidate variables might be considered. However, data availability and computational limitations mean that exclusions must be imposed ex ante. With respect to final outcomes, we focus on growth, poverty, inequality and the sectoral composition of value added. The first three of these variables are intimately
connected (see Bourguignon 2003); therefore, we should expect to see a consistent pattern of effects across them. The remaining variables capture the extent of changes across different macroeconomic sectors (agriculture, industry and services). Historical experiences indicate that sustained growth transitions are normally associated with a declining share of agriculture and a rising share of industry in value added. At the same time, there are concerns that aid may provoke Dutch Disease, which is often associated with faster growth in service sectors rather than manufactures (e.g., Rajan and Subramanian 2011). By including these variables we hope to gain insight into whether aid is associated with specific growth syndromes.

Concerning intermediate outcomes, a number of 'usual suspects' emerge from previous literature. These fall into the following groups: (i) sub-components of GDP (investment, private consumption, government consumption); (ii) components of government revenue and spending; (iii) aggregate education and health outcomes (e.g., average years of schooling, life expectancy); and (iv) monetary and financial sector effects. The specific variables selected and sources of data are detailed in Appendix C.

To assure comparability with previous studies, we employ the same sample and controls used by AJT10, to which we add a dummy for being an oil producer in 1960. The latter is appropriate due to the extension of the dataset from 2000-2007 which covers a period of rapid growth in oil-producing countries driven by rising oil prices. Recall that the full set of conditioning variables (X) enter all reduced form regressions (effects E1 and E2), but different subsets enter equations in the systems estimates (effects E3 and E4).

Finally, data availability for a small number of outcomes (e.g., poverty rates) is scarce in the early years of the period analysed, but improves over time. Thus, the average of the full period (since 1970) would be weighted heavily toward recent outcomes. To avoid this bias, where early data is available (i.e., during 1970s) we calculate a simple average of the initial and end point values, thus implicitly assuming a linear trend over time. Where earlier data is not available, we define the dependent variable as the end point level (see Appendix C for the variables to which this applies), a practice encountered in the growth regression literature where final income is used in place of the growth rate, and initial income is dropped from the RHS (e.g., Mankiw et al. 1992).

3 Results

3.1 Reduced form

Table 1 summarises results from separate regressions for the selected set of final outcomes, using OLS, LIML, and inverse probability weighted least squares (IPWLS) estimators. The latter is presented in Arndt et al. (2010a) and constitutes an extension of doubly robust methods to the instrumental variables context; thus, it serves as a robustness check on the LIML results. To assist interpretation, all variables discussed in this section are standardised. Each cell of Table 1 gives the standardised coefficient on aid (defined in per capita terms) and, in the adjacent cell, the probability this is significantly different from zero. These correspond to results from individual regressions in which the row variable is the regressand. The table also reports the number of observations in each regression, and our prior regarding the expected direction of the partial correlation between aid and each outcome.

The final two columns of the table report additional test statistics. First is the probability from Hansen J-tests based on the same IV specification employed in the LIML column, but using
Table 1: Summary of reduced form results for relationships between aid (per capita) and final outcomes

	Prior	N	OLS	Pr.	LIML	Pr.	IPWLS	Pr.	Hansen-J	OLS/LIML
GDP per capita growth	+	78	0.043	0.52	0.323	$0.04^{* *}$	0.237	$0.05^{* *}$	0.75	-0.866
Agriculture, value added (\% GDP)	-	76	-0.297	$0.03^{* *}$	-0.388	$0.02^{* *}$	-0.503	$0.00^{* * *}$	0.94	-0.234
Industry, value added (\% GDP)	+	76	0.488	$0.02^{* *}$	0.385	0.17	0.389	0.05^{*}	0.77	0.265
Services, etc., value added (\% GDP)	$?$	76	-0.087	0.59	0.144	0.57	0.300	0.19	0.64	-
Poverty headcount at $\$ 2$ a day	-	64	-0.251	$0.05^{* *}$	-0.368	$0.02^{* *}$	-0.200	0.15	0.44	-0.318
Poverty headcount at $\$ 1.25$ a day	-	64	-0.324	$0.04^{* *}$	-0.381	$0.04^{* *}$	-0.130	0.37	0.82	-0.151
GINI index	$?$	65	0.015	0.85	-0.019	0.91	-0.120	0.56	$0.05^{* *}$	-

[^4]Table 2: Summary of reduced form results for relationships between aid (per capita) and intermediate outcomes

	Prior	N	OLS	Pr.	LIML	Pr.	IPWLS	Pr.	Hansen-J	OLS/LIML
Investment (\% GDP)	$+$	78	0.147	$0.05^{* *}$	0.402	$0.02^{* *}$	0.138	0.18	0.77	-0.635
Consumption (\% GDP)	-	78	-0.062	0.48	-0.260	0.18	-0.302	0.07*	0.91	-0.762
Government (\% GDP)	$+$	78	0.258	0.00***	0.383	0.10*	0.338	0.06*	0.03 **	-
Revenue, excluding grants (\% GDP)	?	69	0.265	0.09*	1.027	$0.00^{* * *}$	0.454	0.01***	0.23	-0.742
Health expend., public (\% GDP)	$+$	78	0.184	0.01**	0.183	0.34	-0.236	0.23	0.31	-
Education expend., public (\% GDP)	$+$	76	0.315	0.01***	0.765	$0.00^{* * *}$	0.690	0.00***	0.25	-0.588
Military expenditure (\% GDP)	$+$	77	0.402	0.00***	0.176	0.29	0.098	0.63	0.32	-
Av. years total schooling, 15+	$+$	72	0.169	0.00***	0.327	$0.01^{* *}$	0.162	0.06*	0.85	-0.484
Av. years primary schooling, $15+$	+	72	0.099	0.09*	0.218	0.13	0.078	0.28	0.73	-
Av. years secondary schooling, 15+	$+$	72	0.226	0.00***	0.478	$0.00^{* * *}$	0.259	0.02**	0.92	-0.527
Life expectancy at birth, total (years)	+	78	0.015	0.54	0.094	0.13	0.127	0.04**	0.22	-0.841
Infant mortality rate	-	75	-0.047	0.31	-0.139	0.14	-0.175	0.06*	0.27	-0.662
Mortality rate, under-5 (per 1,000)	-	75	-0.023	0.66	-0.145	0.12	-0.120	0.14	0.25	-
Death rate, crude (per 1,000 people)	-	78	-0.009	0.84	-0.082	0.36	-0.045	0.57	1.00	-
Fertility rate (births / woman)	?	77	0.025	0.63	-0.174	0.09*	0.039	0.47	0.08*	-
Consumer price inflation (\%)	?	77	-0.040	0.66	-0.338	0.13	-0.274	0.18	0.44	-
Real interest rate (\%)	?	77	0.148	0.07*	-0.247	0.37	0.071	0.70	0.31	-
Domestic credit to private sector (\% GDP)	?	78	0.081	0.25	-0.004	0.98	0.140	0.51	0.66	-

[^5]three aggregated instruments for aid in place of the single generated aid instrument (see Section 2.4). A significant result ($<10 \%$) indicates the (joint) null hypothesis that the instruments are valid (are uncorrelated with the regression error) can be rejected. The last column measures the divergence between the OLS and LIML results, given by the ratio of the estimated OLS to the LIML coefficients minus one (for application in a different context see Filmer and Pritchett 1998). Under the assumption that the aid instrument is valid and relevant, indicated by the Hansen test, the denominator should be consistent. Thus, the ratio indicates the bias induced by failing to correct for the endogeneity of aid. However, this is only meaningful if the LIML results are significantly different from zero; thus, results are only reported in these cases and where the Hansen-J test is not rejected at conventional significance levels.

Appendix Table B. 1 gives a sense of the origin of the results in Table 1, being the full regression estimates corresponding to the growth outcome. The first row of Table 1 takes results from columns I, II and III of Appendix Table B.1. The latter also reports information on instrument strength and validity, which is pertinent as all reduced form IV regressions employ the same first stage. These statistics give no cause for concern. Additionally, the table shows results hold-up when the aid to GDP ratio is used instead of aid per capita; however, the generated instrument has a stronger partial correlation with the latter measure (see column II), making it our preferred measure throughout.

Returning to Table 1, the results broadly conform to priors. The finding of a positive (causal) relationship running from aid to growth, established in AJT10, is replicated on this extended dataset. The theoretical relation between growth, poverty and inequality (Bourguignon 2003) is found to be empirically coherent - i.e., aid appears to stimulate growth and reduce poverty, but inequality is unaffected on average. Also, we see that aid is associated with a decrease in the weight of agriculture in GDP, meaning it has grown more slowly than other sectors on average. Under two of the three estimators (OLS and IPWLS), there is a corresponding significant increase in industry's GDP share; however the impact on services remains ambiguous.

The Hansen-J test is passed comfortably in all cases, excluding for the Gini coefficient. For the Gini, both the OLS and IV point estimates may be biased, which highlights that selecting a sufficient conditioning set and valid instrument for multiple outcomes is an appreciable task. On the other hand, assuming no correlations between test results, the probability that the Hansen J passes at the 10% level in all seven cases is less than one in two even if the null is true in all cases. The ratio of the OLS to LIML point estimates, where meaningful, also indicate the OLS estimates are biased downwards, which is consistent with the notion that 'poor' performance on certain outcomes is associated with relatively larger aid inflows. ${ }^{6}$

Table 2 reports reduced form results for the effect of aid per capita on the chosen set of intermediate outcomes, adopting the same format as Table 1. Again, estimates are reasonably consistent across the different estimators and broadly conform to priors. Investment, government consumption and revenues are positively affected by aid inflows. Sub-components of government spending indicate that aid also boosts expenditure in social sectors. However, although the OLS estimates indicate a positive and significant effect of aid on military spending, this is not confirmed by the IV estimates. The impact of aid on key social outcomes corroborates positive results of a number of previous studies which employ panel techniques (see Section 4). This is especially so for education outcomes, and secondary school education in particular. While health outcomes conform to expectations concerning the sign of the coefficients on aid, the

[^6]LIML estimates slightly exceed conventional significance levels whilst the IPWLS estimates for infant mortality and life expectancy are significant. Results for monetary and financial sector indicators are ambiguous, meaning there is no evidence of a systematic effect of aid on inflation or credit to the private sector.

Lastly, the test statistics in the final columns of the table follow the pattern of those in Table 1. We are not able to reject the null of instrument validity for the majority of intermediate outcomes, the two exceptions being government size and fertility rates. Also, for the variables where at least one of the IV estimates is significant, the OLS estimates are found to be biased downward. Thus, these statistics lend support to the overall validity of the chosen approach.

3.2 Structural form

The reduced form results indicate some of the key channels through which aid affects various intermediate and final outcomes. To estimate the structural form, however, it is not feasible to encompass all these variables. More practical is to focus on a pared-down system. To do so, we restrict the set of final outcome variables to growth. With respect to intermediate outcomes (transmission channels), we focus on standard inputs into an aggregate production function, namely investment and human capital - captured by education (average school years) and life expectancy. From Table 1, we note aid is a highly significant determinant of these inputs.

The simplified model takes the form of Figure 2 but includes three intermediate outcomes. No specific assumptions are made as regards the interaction structure between these (and other) elements of $\mathbf{Y} .{ }^{7}$ Algebraically, this gives a triangular system in five equations: per capita growth; three aggregate inputs to growth (investment, education and health) in which aid features as a determinant; and a supply-side model for aid. The full system of equations and corresponding exogenous variables employed in both the baseline and augmented models (see below) is given in Appendix A.

To estimate the system we begin by ignoring endogeneity concerns and separately estimate the equations of the baseline model by OLS, employing the same RHS specifications as in Section 3.1. ${ }^{8}$ That is, we separately estimate 'raw' versions of equations (2) to (5). Summary results are reported in column I of Appendix Table B.2. Next, we estimate the same equations by the iterated SUR (iSUR) method which, as noted by Pagan (1979), can be interpreted as an instrumental variables estimator as it numerically produces LIML parameter estimates on convergence (also Gao and Lahiri 2000). Thus, applied to the baseline model, which includes a separate equation for aid, the iSUR estimates in column II of Appendix Table B. 2 address the endogeneity of aid, but not that of the intermediate outcomes. ${ }^{9}$

The previous estimates exhibit possible confounding of investment and human capital with growth. However, as discussed in Section 2.3, we cannot rely on the aid instrument for identification. Instruments for the intermediate variables are selected by partioning the aggregate control set

[^7](\mathbf{X}). Concretely, we define $\mathbf{X}_{\mathbf{2}}=\{$ initial education, air distance, investment prices $\}$ as excluded instruments in the growth equation. This is due to their essential redundancy in previous estimates (see Table B.1) and their plausible relevance to the chosen transmission channels. However, this gives a just-identified system. Thus, we add three supplementary exogenous variables (landlocked, ethnic fractionalization and HIV prevalence), also chosen in light of theoretical relevance and previous literature (e.g., Tavares and Wacziarg 2001). ${ }^{10}$ This defines the augmented model.

Instrumental variables estimators are appropriate to estimate this augmented model. Thus, column III of Appendix Table B. 2 estimates each equation separately using a standard 2SLS estimator; column IV applies an iterated 3SLS estimator; and column V reapplies the iSUR method to the augmented system, yielding estimates equivalent to LIML. ${ }^{11}$ Notwithstanding the theoretical advantages of system estimators, there are practical concerns. Single-equation estimators, such as 2SLS, will be consistent as long as the instrument set is valid. While efficiency gains can be realised from using a full systems estimator (3SLS), if any one of the equations is poorly specified or employs invalid instruments, then parameter estimates for the entire system will be inconsistent (Greene 2002). Consequently, it is vital to investigate the strength and validity of the expanded instrument set. This can be gauged directly from single-equation IV estimates of the growth equation, where we apply the full set of excluded instruments, including the generated instrument for aid, to each of the three endogenous regressors. The results (not reported) indicate the new instrument set does not violate over-identification tests (Hansen J statistic $=0.92 ;$ probability $=0.92)$. Nonetheless, instrument strength varies across the three endogenous variables. Shea's (1997) partial R^{2} measure from the individual first stage regressions ranges from 0.16 (education), 0.20 (investment) to 0.34 (health). Overall, the instrument set appears weak, with a Kleibergen-Paap Wald F statistic of only 1.38, suggesting there is likely to be substantial bias in the system from weak instruments. However, Anderson-Rubin Wald tests which are robust to the presence of weak instruments confirm a statistically significant relationship between the endogenous variables and growth. Further regressions confirm the merit of including additional instruments, rather than relying on the partition of \mathbf{X} alone. Indeed, in a similar model employing only $\mathbf{X}_{\mathbf{2}}$ as instruments for the intermediate variables, the specification fails rank-based under-identification tests and gives a Kleibergen-Paap Wald F statistic of 0.04.

Despite these concerns, a glance at Appendix Table B. 2 reveals that the estimated parameters are broadly stable across all estimators and specifications. There are two main exceptions. First, as might be expected due to aid's endogeneity, the OLS estimates (column I) differ most and particularly in the growth equation. Second, the estimated parameter on education in the growth equation is sensitive to the estimation method and specification. The parameter is positive in the baseline model and highly significant under iSUR but is insignificant in all IV estimates of the augmented model. Thus, the principal and most robust transmission channels linking aid to growth are investment and health. In all estimates aid also appears to have a significant and positive impact on each one of the three intermediate outcomes. In support of earlier results, the estimated coefficients on aid from the structural estimates of these intermediate equations typically fall within sampling variation of the reduced form estimates (see Tables 1 and 2).

Finally, to decompose the effects of aid on growth, Table 3 quantifies the contribution of each

[^8]Table 3: Structural estimates of transmission channels linking aid to growth via selected intermediate outcomes $\left(Y_{m}\right)$

	Aid $\rightarrow Y_{m}$	$Y_{m} \rightarrow$ growth	
Y_{m}	$[\mathrm{~A}]$	Aid \rightarrow growth	
$[\mathrm{B}]$	$[\mathrm{A} \times \mathrm{B}]$		
Investment	0.402	0.294	0.118
	(5.41)	(3.29)	(2.85)
Education	0.274	0.435	0.119
	(6.27)	(3.02)	(2.75)
Health	0.094	0.904	0.085
	(3.13)	(4.01)	(2.52)
Overall		$\mathbf{1 . 6 3 3}$	$\mathbf{0 . 3 2 3}$
		(5.79)	(4.68)

	(b) iSUR - augmented				
Investment	0.410	0.523	0.214		
	(6.51)	(6.29)	(4.55)		
Education	0.267	-0.066	-0.018		
	(5.93)	(-0.50)	(-0.50)		
Health	0.112	0.555	0.062		
	(4.35)	(2.43)	(2.16)		
Overall		$\mathbf{1 . 0 1 1}$	$\mathbf{0 . 2 5 9}$		
		(3.65)	(3.97)		

[^9]channel based on the iSUR results in columns II and V of Appendix Table B.2. The first column gives the direct effect of aid on the specified channel (effect E3), while the second column gives the effect of that channel on growth, controlling for the other channels (effect E4). The final column reports their product, thereby giving an estimate of the individual effect of aid on growth due to the specified channel. The sum of these individual effects gives the estimated aggregate contribution of aid to growth due to the three channels. Corresponding t-ratios are also reported in parentheses, approximated by the unbiased variance estimator of the product of two independent random variables due to Goodman (1960).

The table confirms that the total effect of aid on growth is positive, significant and extremely consistent with the reduced form results. A counterfactual increase in aid per capita of one standard deviation increases growth by around a third of a standard deviation (on average). In terms of overall significance and coefficient size, we see the investment channel is at least as important as the other transmission channels in the baseline model and is dominant in the augmented model. This arises mainly from the larger direct effect of aid on investment compared

Table 4: Summary of effects of aid per capita of US\$25 (annual average for 1970-2007) on various outcomes

	OLS					LIML		
Variable	Lower	Point	Upper		Lower	Point	Upper	
GDP per capita growth	-0.17	0.08	0.34		0.01	0.47	0.92	
Agriculture, value added (\% GDP)	-8.43	-4.38	-0.33		-12.30	-7.42	-2.55	
Poverty headcount at \$1.25 a day	-16.64	-8.55	-0.47		-11.01	-3.44	4.12	
Investment (\% GDP)	0.03	1.66	3.29		-0.73	1.56	3.86	
Government (\% GDP)	1.10	2.39	3.68		-0.12	3.12	6.37	
Revenue, excluding grants (\% GDP)	-0.38	2.57	5.52		1.24	4.40	7.57	
Av. years total schooling, 15+	0.17	0.39	0.61		-0.01	0.37	0.76	
Life expectancy at birth, total (years)	-0.35	0.16	0.66		0.04	1.33	2.62	
Infant mortality rate	-5.42	-1.83	1.77		-13.84	-6.81	0.22	

Notes: table reports the raw estimated effect of aid on selected outcome variables based on the reduced form regressions summarised in Tables 1 and 2 ; aid per capita is expressed in units of US $\$ 25$; 'lower' and 'upper' refer to 95% confidence limits; estimators indicated by column headings.
Source: authors' calculations; see Appendix C for variable definitions and sources.
to education and health. ${ }^{12}$ The effect of aid on growth via health is also positive and significant, responsible for around 25% of its total growth effect under both models.

Finally, the model passes the falsification test suggested in Section 2.3. When the fitted aid measure is employed as an included instrument in a single-equation IV estimate of the system growth equation, including intermediate variables appropriately instrumented, the estimated coefficient on aid is insignificant. This implies that the transmission channels in the simplified structural model explain the majority of the causal effect of aid on growth, corroborating the results of Table 3.

4 Interpretation

Thus far, discussion of results has concentrated on statistical significance. It is helpful to reflect on whether they are economically plausible. This cannot be ascertained from the previous tables as the coefficients are in standardized form. Consequently, for a selected number of final and intermediate outcomes, Table 4 presents the reduced form point estimates and 95% confidence intervals for the expected return to an average annual aid inflow of US $\$ 25$ per capita over the period 1970-2007 (which is slightly above the mean for the sample; see Appendix C). We find the long-run impacts of aid are plausible but modest. According to the LIML point estimates, on average a sustained inflow of US $\$ 25$ aid per capita is expected to increase the rate of economic growth by around half a percentage point, reduce poverty by around 6.5 percentage points, raise investment by around 1.5 percentage points in GDP, augment average schooling by 0.4 years, boost life expectancy by 1.3 years and reduce infant mortality by 7 in every 1000 births. (These effects refer to the expected change in the period averages of the outcome variables).

The internal consistency of the reduced and structural form results corroborate the present

[^10]findings. Also, our reduced form results are externally consistent. Investment is frequently identified as a principal growth determinant (Mankiw et al. 1992; Sala-i-Martin et al. 2004), and evidence points to (very) long-run growth effects from improvements in aggregate health (Jack and Lewis 2009). The present estimates of the impact of aid on growth imply a reasonable aggregate 'return on aid' over the entire period. That is, for a period average per capita income of US $\$ 800$ from 1970-2007 and a counterfactual per capita growth rate of 1.5% per annum, the relative income gain due to aid minus the annual per capita aid cost (a constant share of GDP resulting in a period average of $\$ 25$ per capita) yields a net cash flow with an internal rate of return around 16%. This is reasonably close to the (shorter-run) estimate of an approximate 20% return to foreign aid due to Dalgaard and Hansen (2005). Also, our replication of AJT10 with an extended dataset yields highly consistent point estimates for the aid-growth coefficient. ${ }^{13}$

The reduced form results for the intermediate outcomes are also consistent with previous studies, despite the fact they employ alternative models and econometric methods. Gomanee et al. (2005), Masud and Yontcheva (2007) and Mishra and Newhouse (2009) all find positive effects of certain kinds of aid on health outcomes; while Michaelowa (2004) and Dreher et al. (2008) report positive effects of aid on education enrolment rates. Similar to our falsification test, Hansen and Tarp (2001) find that aid is not significant in a growth regression which controls for investment and human capital, but that aid remains a significant determinant of investment. Furthermore, our results provide some basis for rejecting theoretical concerns regarding detrimental effects of aid, such as on domestic revenue mobilization (Moss et al. 2006). Our results are closer to Pivovarsky et al. (2003), who find a positive revenue impact from concessional loans (but a small negative effect from grants). Similarly, consistent with van de Walle and Mu (2007), our results suggest that at least some aid 'sticks' to the social sectors and is not entirely fungible.

With respect to the link between poverty and growth, the reduced form results enable us to back-out an estimate of the aid-induced growth elasticity of poverty (GEP). This is calculated from the ratio of the (unstandardized) estimated coefficients on aid in the poverty and growth regressions, each expressed as a percentage of the mean of the respective dependent variable. For both the US $\$ 1.25$ and US $\$ 2$ poverty measures, the aid-induced GEP is just under one. Although this estimate sits at the lower end of the overall GEP estimates provided by Bourguignon (2003), they are consistent with the recent estimates of Fanta and Upadhyay (2009) for Africa, and Ram (2006) for a range of developing countries. Thus, there is no reason to conclude that aid is any less effective in reducing poverty than other growth drivers over the long-run.

Notwithstanding the above, the results present a few puzzles. The most important of these is the absence of a robust effect running from schooling to growth, despite the finding that aid appears to enhance educational outcomes. One explanation is the absence of dynamics in the model - by focussing on long period cross-sections we neglect the time profile of different impacts. It may be that aid has significantly financed education relatively recently, and insufficient time has passed for this to cumulate into labour market and subsequent growth effects. Also, the empirical weakness of the education-growth relation is not new. Pritchett (2001) suggests various reasons, including low quality of schooling and weak growth in the demand for skilled labour. The main point being that the macroeconomic effect of increased school years (access to schooling) is likely to be complex and heterogeneous. Attenuation bias due to measurement error may be another explanation. As Cohen and Soto (2007) show, standard cross-country measures of education outcomes are noisy and potentially misleading in empirical applications. Moreover,

[^11]the discussion in Section 3 flagged the problem of weak instruments, particularly with respect to education.

Left largely unresolved is the relationship between aid and productivity, which at a general level refers to the effect of aid on institutions and governance. The structural form estimates of the effects of aid on growth approximately sum to the (unrestricted) reduced form estimates. ${ }^{14}$ Thus, the three channels encompassed by the former estimates capture the vast majority of the effects of aid on growth. One interpretation is that any productivity-enhancing effects due to aid are negligible, or that any such effects (whether positive or negative) are cancelled out by other channels excluded from the simplified structural equations estimates. On the other hand, technical change is often embodied in new capital goods, making it difficult to separate from investment. These kinds of effects would be captured by the existing channels, leaving little room for any residual contribution to productivity growth. Either way, the net effect of foreign aid on productivity remains unclear, and this is an important area for future analysis.

5 Conclusions

This paper aimed to address a key gap in the literature on foreign aid and unpack the causal chain linking aid to development. Applying the SCM framework, we began by presenting a general structural model of the relationship between aid and aggregate outcomes which is consistent with the framework employed in the literature on growth empirics. To estimate this model, we first calculated reduced form estimates of the relationship between aid and final outcomes. The results confirm a moderate and robust positive impact of aid on growth for the 1970-2007 period, thereby replicating the findings of AJT10 using an extended dataset. The aggregate effects of aid are also coherent. On average and over the long-run, foreign aid reduces poverty and contributes to more rapid expansion of 'modern' sectors and, thus, a relative decline of agriculture's share in GDP.

To gain insight into relevant transmission channels, we applied the same reduced form approach to a set of intermediate outcomes. These revealed a range of positive and significant effects due to aid - e.g., on investment, government revenue and spending, and on social outcomes. Lastly, we estimated a simplified representation of the full structural form, allowing aid to impact on growth through inputs into an aggregate production function. The results were consistent with those of the reduced form, confirming a strong direct effect of aid on investment, education and health outcomes. It also indicated that investments in physical capital and improvements in health are the most robust transmission channels through which aid promotes growth. The effect of education on growth is ambiguous.

Three policy-relevant messages can be taken away. First, for a wide range of outcomes, there is no evidence that aid is detrimental. Paying careful attention to issues of causality, we find that aid has a moderate positive effect on growth and poverty reduction. Second, a key contribution was to indicate the mechanisms through which aid has achieved such effects. Emphasis on channelling external funds to physical capital investments of a public nature, as well as to human capital improvements appears prudent. Third, by way of caveats, all the results presented here are 'on average' and 'over the long-run' in nature. They do not provide a basis for designing specific policy interventions in specific contexts. We would also reiterate that the long-run effects of foreign aid are moderate, meaning that aid is not a panacea. Finally, the contribution of foreign aid to productivity growth merits further investigation.

[^12]
References

Arndt, C., Jones, S. and Tarp, F. (2010a). Aid, Growth, and Development: Have We Come Full Circle? Journal of Globalization and Development, 1(2):Article 5.

- (2010b). Aid, Growth, and Development: Have We Come Full Circle? WIDER Working Paper 2010-96, World Institute for Development Economic Research (UNU-WIDER).

Baldacci, E., Hillman, A.L. and Kojo, N.C. (2004). Growth, governance, and fiscal policy transmission channels in low-income countries. European Journal of Political Economy, 20(3):517-549.

Balke, A. and Pearl, J. (1997). Bounds on treatment effects from studies with imperfect compliance. Journal of the American Statistical Association, 92(439):1171-1176.

Bourguignon, F. (2003). The growth elasticity of poverty reduction: explaining heterogeneity across countries and time periods. In T.S. Eicher and S.J. Turnovsky (Eds.), Inequality and Growth: Theory and Policy Implications, pp. 3-27. MIT Press.

Bourguignon, F. and Sundberg, M. (2007). Aid Effectiveness - Opening the Black Box. American Economic Review, 97(2):316-321.

Brito, C. and Pearl, J. (2006). Graphical Models for Identification in Structural Equation Models. In R. Dechter and T.S. Richardson (Eds.), Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence, pp. 47-54. Corvallis, OR: AUAI Press. URL escholarship.org/ uc/item/Ojh2v829.pdf.

Buvé, A., Bishikwabo-Nsarhaza, K. and Mutangadura, G. (2002). The spread and effect of HIV-1 infection in sub-Saharan Africa. The Lancet, 359(9322):2011-2017.

Clemens, M., Radelet, S. and Bhavnani, R. (2004). Counting Chickens When They Hatch: The Short-term Effect of Aid on Growth. Working Papers 44, Center for Global Development.

Cohen, D. and Soto, M. (2007). Growth and human capital: good data, good results. Journal of Economic Growth, 12(1):51-76.

Cole, S., Platt, R., Schisterman, E., Chu, H., Westreich, D., Richardson, D. and Poole, C. (2010). Illustrating bias due to conditioning on a collider. International journal of epidemiology, 39(2):417.

Dalgaard, C.J. and Hansen, H. (2005). The Return to Foreign Aid. Discussion Papers 05-04, University of Copenhagen. Department of Economics.

Dalgaard, C.J., Hansen, H. and Tarp, F. (2004). On The Empirics of Foreign Aid and Growth. The Economic Journal, 114(496):F191-F216.

Dreher, A., Nunnenkamp, P. and Thiele, R. (2008). Does Aid for Education Educate Children? Evidence from Panel Data. The World Bank Economic Review, 22(2):291-314.

Fanta, F. and Upadhyay, M. (2009). Poverty reduction, economic growth and inequality in Africa. Applied Economics Letters, 16(18):1791-1794.

Filmer, D. and Pritchett, L. (1998). Estimating wealth effects without expenditure data or tears: With an application to educational enrollments in states of India. Policy Research Working Paper Series 1994, The World Bank.

Gao, C. and Lahiri, K. (2000). Further consequences of viewing LIML as an iterated Aitken estimator. Journal of Econometrics, 98(2):187-202.

Gomanee, K., Girma, S. and Morrissey, O. (2005). Aid, public spending and human welfare: evidence from quantile regressions. Journal of International Development, 17(3):299-309.

Goodman, L.A. (1960). On the exact variance of products. Journal of the American Statistical Association, 55:708-713.

Greene, W.H. (2002). Econometric Analysis. Prentice Hall, 5th edition.
Hansen, H. and Tarp, F. (2000). Aid effectiveness disputed. Journal of International Development, 12(3):375-398.

- (2001). Aid and growth regressions. Journal of Development Economics, 64(2):547-570.

Heckman, J.J. (2008). Econometric Causality. International Statistical Review, 76(1):1-27. URL http://ideas.repec.org/a/bla/istatr/v76y2008i1p1-27.html.

Jack, W. and Lewis, M. (2009). Health Investments and Economic Growth: Macroeconomic Evidence and Microeconomic Foundations. In M. Spence and M. Lewis (Eds.), Health and Growth, pp. 1-41. World Bank.

Mankiw, N.G., Romer, D. and Weil, D.N. (1992). A Contribution to the Empirics of Economic Growth. The Quarterly Journal of Economics, 107(2):407-37.

Masud, N. and Yontcheva, B. (2007). Does foreign aid reduce poverty? Empirical evidence from nongovernmental and bilateral aid. IMF Working Papers 07/100, International Monetary Fund.

Mekasha, T.J. and Tarp, F. (2011). Aid and Growth: What Meta-Analysis Reveals. UNUWIDER Working Paper 2011/22, World Institute for Development Economics Research (UNU-WIDER).

Michaelowa, K. (2004). Aid Effectiveness Reconsidered - Panel Data Evidence for the Education Sector. Discussion Paper Series 26374, Hamburg Institute of International Economics.

Mishra, P. and Newhouse, D. (2009). Does health aid matter? Journal of Health Economics, 28(4):855-872.

Moss, T., Pettersson, G. and van de Walle, N. (2006). An Aid-Institutions Paradox? A Review Essay on Aid Dependency and State Building in sub-Saharan Africa. Working Papers 74, Center for Global Development.

Pagan, A. (1979). Some consequences of viewing LIML as an iterated Aitken estimator. Economics Letters, 3(4):369-372.

Pearl, J. (2009). Causality: Models, reasoning and inference. Cambridge University Press, 2nd edition.

- (2010). An Introduction to Causal Inference. The International Journal of Biostatistics, $6(2)$.

Pivovarsky, A., Clements, B.J., Gupta, S. and Tiongson, E. (2003). Foreign Aid and Revenue Response: Does the Composition of Aid Matter? IMF Working Papers 03/176, International Monetary Fund.

Pritchett, L. (2001). Where Has All the Education Gone? The World Bank Economic Review, 15(3):367-391. doi:10.1093/wber/15.3.367.

Rajan, R.G. and Subramanian, A. (2008). Aid and Growth: What Does the Cross-Country Evidence Really Show? The Review of Economics and Statistics, 90(4):643-665.

- (2011). Aid, Dutch disease, and manufacturing growth. Journal of Development Economics, 94(1):106-118.

Ram, R. (2006). Growth Elasticity of Poverty: Alternative Estimates and a Note of Caution. Kyklos, 59(4):601-610.

Rubin, D.B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of educational Psychology, 66(5):688.

Sala-i-Martin, X., Doppelhofer, G. and Miller, R.I. (2004). Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach. American Economic Review, 94(4):813-835.

Shea, J. (1997). Instrument relevance in multivariate linear models: a simple measure. Review of Economics and Statistics, 49:348-352.

Tarp, F. (2006). Aid and development. Swedish Economic Policy Review, 13:9-61.
Tavares, J. and Wacziarg, R. (2001). How democracy affects growth. European Economic Review, 45(8):1341-1378.

Temple, J. (2010). Aid and Conditionality. Handbook of Development Economics, 5:4416-4522.
Tian, J. and Pearl, J. (2002). A general identification condition for causal effects. In Proceedings of the Eighteenth National Conference on Artificial Intelligence, pp. 567-573. Menlo Park, CA: AAAI Press/The MIT Press.
van de Walle, D. and Mu, R. (2007). Fungibility and the flypaper effect of project aid: Microevidence for Vietnam. Journal of Development Economics, 84(2):667-685.

Zellner, A. (1962). An efficient method of estimating seemingly unrelated regression equations and tests for aggregation bias. Journal of the American Statistical Association, 52:348-368.

A Appendix: model summary

The following equations summarise the simplified system estimated in the structural form analysis of Section 3.2.

Eq.	Baseline model	Augmented model
(i)	growth $=f(k i, e d u$, health, $x)$	growth $=f\left(k i\right.$, edu, health, $\left.x_{1}\right)$
(ii)	$k i=f($ aid,$x)$	$k i=f\left(\right.$ aid $\left., r, x_{1}\right)$
(iii)	$e d u=f($ aid, $x)$	$e d u=f\left(\right.$ aid $\left., r, x_{1}\right)$
(iv)	health $=f($ aid,$x)$	health $=f\left(\right.$ aid, $\left.r, x_{1}\right)$
(v)	aid $=f(v, x)$	aid $=f\left(v, r, x_{1}\right)$

Variable definitions: growth $=$ Real GDP growth per capita; $k i=$ Investment / real GDP; $e d u=$ Av. years total schooling; health $=$ Life expectancy at birth; aid $=$ Aid per capita; v $=$ Generated aid instrument.

Vector definitions: with the exception of HIV prevalence, all elements of the following vectors refer to initial conditions only (i.e., values do not refer to period averages); $x^{\prime}=\left[x_{1} x_{2}\right]$; $r^{\prime}=\left[r_{1} x_{2}\right] ; x_{1}^{\prime}=$ (Income per capita, Sachs-Warner trade policy index, Life expectancy, Geographic features, Coastal population density, Malaria prevalence index, Civil liberties, Oil producer) ; $x_{2}^{\prime}=$ (Primary education enrolment rate, Price of investment goods, Air distance to major cities) $r_{1}^{\prime}=$ (Prevalence of HIV, Ethnic Fractionalization, Landlocked).

B Appendix: additional tables

Table B.1: Estimates of reduced form relation between aid and growth, 1970-2007

	Aid per capita				Aid / GDP			
	$\begin{gathered} \text { I } \\ \mathrm{b} / \mathrm{se} \end{gathered}$	$\begin{gathered} \text { II } \\ \mathrm{b} / \mathrm{se} \end{gathered}$	$\begin{gathered} \text { III } \\ \mathrm{b} / \mathrm{se} \end{gathered}$	$\begin{gathered} \text { IV } \\ \mathrm{b} / \mathrm{se} \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~b} / \mathrm{se} \end{gathered}$	$\begin{gathered} \text { VI } \\ \mathrm{b} / \mathrm{se} \end{gathered}$	VII b/se	$\begin{aligned} & \text { VIII } \\ & \text { b/se } \end{aligned}$
Aid measure	$\begin{gathered} 0.04 \\ (0.07) \end{gathered}$	$\begin{aligned} & 0.32^{* *} \\ & (0.16) \end{aligned}$	$\begin{gathered} 0.24^{* *} \\ (0.12) \end{gathered}$	$\begin{gathered} 0.27^{* *} \\ (0.13) \end{gathered}$	$\begin{aligned} & -0.11 \\ & (0.07) \end{aligned}$	$\begin{aligned} & 0.64^{*} \\ & (0.38) \end{aligned}$	$\begin{gathered} 0.61^{* *} \\ (0.29) \end{gathered}$	$\begin{aligned} & 0.43^{*} \\ & (0.25) \end{aligned}$
GDP per capita (PPP)	$\begin{gathered} -0.66^{* * *} \\ (0.14) \end{gathered}$	$\begin{gathered} -0.71^{* * *} \\ (0.14) \end{gathered}$	$\begin{gathered} -0.70^{* * *} \\ (0.13) \end{gathered}$	$\begin{gathered} -0.70^{* * *} \\ (0.13) \end{gathered}$	$\begin{gathered} -0.71^{* * *} \\ (0.15) \end{gathered}$	$\begin{aligned} & -0.32 \\ & (0.24) \end{aligned}$	$\begin{aligned} & -0.35 \\ & (0.23) \end{aligned}$	$\begin{gathered} -0.43^{* *} \\ (0.19) \end{gathered}$
Primary schooling	$\begin{gathered} 0.14 \\ (0.46) \end{gathered}$	$\begin{gathered} 0.08 \\ (0.43) \end{gathered}$	$\begin{gathered} 0.21 \\ (0.41) \end{gathered}$	$\begin{gathered} 0.09 \\ (0.42) \end{gathered}$	$\begin{gathered} 0.15 \\ (0.47) \end{gathered}$	$\begin{gathered} 0.16 \\ (0.52) \end{gathered}$	$\begin{gathered} 0.24 \\ (0.45) \end{gathered}$	$\begin{gathered} 0.15 \\ (0.47) \end{gathered}$
Trade policy index	$\begin{gathered} 0.76^{* * *} \\ (0.23) \end{gathered}$	$\begin{gathered} 0.79^{* * *} \\ (0.21) \end{gathered}$	$\begin{gathered} 0.78^{* * *} \\ (0.19) \end{gathered}$	$\begin{gathered} 0.79^{* * *} \\ (0.21) \end{gathered}$	$\begin{gathered} 0.77^{* * *} \\ (0.22) \end{gathered}$	$\begin{gathered} 0.69^{* *} \\ (0.28) \end{gathered}$	$\begin{gathered} 0.70^{* * *} \\ (0.26) \end{gathered}$	$\begin{gathered} 0.71^{* * *} \\ (0.24) \end{gathered}$
Life expectancy	$\begin{aligned} & 0.04^{* *} \\ & (0.02) \end{aligned}$	$\begin{gathered} 0.04^{* *} \\ (0.02) \end{gathered}$	$\begin{aligned} & 0.04^{* *} \\ & (0.02) \end{aligned}$	$\begin{gathered} 0.04^{* *} \\ (0.02) \end{gathered}$	$\begin{aligned} & 0.03^{*} \\ & (0.02) \end{aligned}$	$\begin{gathered} 0.06^{* *} \\ (0.02) \end{gathered}$	$\begin{gathered} 0.06^{* * *} \\ (0.02) \end{gathered}$	$\begin{gathered} 0.05^{* * *} \\ (0.02) \end{gathered}$
Geography	$\begin{gathered} 0.10 \\ (0.11) \end{gathered}$	$\begin{aligned} & 0.17^{*} \\ & (0.10) \end{aligned}$	$\begin{aligned} & 0.18^{*} \\ & (0.09) \end{aligned}$	$\begin{gathered} 0.16 \\ (0.10) \end{gathered}$	$\begin{gathered} 0.08 \\ (0.11) \end{gathered}$	$\begin{gathered} 0.10 \\ (0.12) \end{gathered}$	$\begin{gathered} 0.12 \\ (0.10) \end{gathered}$	$\begin{gathered} 0.10 \\ (0.11) \end{gathered}$
Coastal pop. dens.	$\begin{gathered} 0.00^{* * *} \\ (0.00) \end{gathered}$	$\begin{gathered} 0.00^{* *} \\ (0.00) \end{gathered}$	$\begin{gathered} 0.00^{* * *} \\ (0.00) \end{gathered}$	$\begin{aligned} & 0.00^{* *} \\ & (0.00) \end{aligned}$				
Malaria prevalence	$\begin{gathered} -1.01^{* * *} \\ (0.28) \end{gathered}$	$\begin{gathered} -1.13^{* * *} \\ (0.30) \end{gathered}$	$\begin{gathered} -0.96^{* * *} \\ (0.25) \end{gathered}$	$\begin{gathered} -1.11^{* * *} \\ (0.28) \end{gathered}$	$\begin{gathered} -0.96^{* * *} \\ (0.26) \end{gathered}$	$\begin{gathered} -1.19^{* * *} \\ (0.39) \end{gathered}$	$\begin{gathered} -1.08^{* * *} \\ (0.32) \end{gathered}$	$\begin{gathered} -1.13^{* * *} \\ (0.33) \end{gathered}$
Investment prices	$\begin{aligned} & -0.00 \\ & (0.00) \end{aligned}$							
Civil liberties	$\begin{gathered} -0.14 \\ (0.28) \end{gathered}$	$\begin{aligned} & -0.40 \\ & (0.33) \end{aligned}$	$\begin{aligned} & -0.35 \\ & (0.25) \end{aligned}$	$\begin{aligned} & -0.35 \\ & (0.32) \end{aligned}$	$\begin{aligned} & -0.05 \\ & (0.27) \end{aligned}$	$\begin{gathered} -0.34 \\ (0.39) \end{gathered}$	$\begin{aligned} & -0.39 \\ & (0.32) \end{aligned}$	$\begin{aligned} & -0.26 \\ & (0.32) \end{aligned}$
Air distance	$\begin{gathered} -0.28 \\ (0.18) \end{gathered}$	$\begin{gathered} -0.32^{*} \\ (0.17) \end{gathered}$	$\begin{gathered} -0.34^{* *} \\ (0.17) \end{gathered}$	$\begin{aligned} & -0.31^{*} \\ & (0.17) \end{aligned}$	$\begin{aligned} & -0.26 \\ & (0.18) \end{aligned}$	$\begin{gathered} -0.34^{*} \\ (0.21) \end{gathered}$	$\begin{gathered} -0.39^{* *} \\ (0.20) \end{gathered}$	$\begin{gathered} -0.32^{*} \\ (0.19) \end{gathered}$
Oil producer	$\begin{gathered} 0.52^{* * *} \\ (0.17) \end{gathered}$	$\begin{gathered} 0.61^{* * *} \\ (0.16) \end{gathered}$	$\begin{gathered} 0.68^{* * *} \\ (0.13) \\ \hline \end{gathered}$	$\begin{gathered} 0.59^{* * *} \\ (0.15) \end{gathered}$	$\begin{gathered} 0.44^{* *} \\ (0.18) \end{gathered}$	$\begin{gathered} 0.91^{* * *} \\ (0.28) \end{gathered}$	$\begin{gathered} 1.01^{* * *} \\ (0.21) \end{gathered}$	$\begin{gathered} 0.78^{* * *} \\ (0.22) \end{gathered}$
N	78	78	78	78	78	78	78	78
R2	0.74	0.67	0.68	0.69	0.74	0.54	0.55	0.64
Weak id. stat.		16.08	10.04	10.09		9.16	12.13	4.26
Anderson-Rubin test		5.34	6.42	7.51		5.34	6.42	7.51
(prob.)		0.021	0.011	0.057		0.021	0.011	0.057

Notes: columns report full results for growth regressions with alternative measures of aid (as indicated in the header); intercept and region dummies included but not shown; growth and aid measures enter in standardized form; columns I and V estimated by OLS, treating aid as exogenous; columns II and VI estimated by LIML, using a single generated aid instrument; columns III and VII replicate the latter with IPWLS; columns IV and VIII use three instruments for aid taken from the zero stage regression employed to generate the single aggregate aid instrument used previously; standard errors are robust.

[^13]Table B.2: Summary of regression estimates of simplified structural form

	Baseline model		Augmented model		
	$\begin{gathered} \text { I } \\ \text { OLS } \end{gathered}$	$\begin{gathered} \text { II } \\ \text { iSUR } \end{gathered}$	$\begin{gathered} \text { III } \\ \text { 2SLS } \end{gathered}$	$\begin{gathered} \text { IV } \\ 3 \mathrm{SLS} \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{iSUR} \end{gathered}$
a. Growth					
Investment	0.11	$0.29 * * *$	0.49**	0.49**	$0.52^{* * *}$
Schooling years	0.06	$0.44 * * *$	-0.02	-0.02	-0.07
Life expectancy	$0.53 * *$	0.90 ***	0.55	0.55	$0.55 * *$
Primary schooling	0.04	-0.48			
Investment prices	-0.00	-0.00			
Air distance	-0.15	0.04			
b. Investment					
Aid per capita	0.15*	0.40 ***	0.38**	$0.41^{* * *}$	$0.41^{* * *}$
Primary schooling	0.64	0.58	0.17	0.06	0.08
Investment prices	$-0.00^{* *}$	-0.00**	-0.00	-0.00	-0.00
Air distance	$-0.67^{* * *}$	$-0.70 * * *$	-0.91***	$-0.88{ }^{* * *}$	$-0.87 * * *$
HIV prevalence			$0.05^{* *}$	$0.06{ }^{* * *}$	0.06 ***
Landlocked			-0.19	-0.19	-0.19
Ethnic fraction.			0.84**	0.75**	$0.74 * *$
c. Education					
Aid per capita	$0.16{ }^{* * *}$	$0.27 * * *$	$0.27 * *$	$0.27^{* * *}$	$0.27^{* * *}$
Primary schooling	$1.07{ }^{* * *}$	$1.05^{* * *}$	$1.08^{* * *}$	$1.08^{* * *}$	$1.08^{* * *}$
Investment prices	-0.00**	-0.00**	-0.00	-0.00	-0.00
Air distance	-0.14	-0.15	-0.23	-0.23*	-0.23*
HIV prevalence			0.00	0.00	0.00
Landlocked			0.09	0.09	0.09
Ethnic fraction.			0.47*	$0.47^{* *}$	$0.48 * *$

continued overleaf ...

Table B.2: Summary of regression estimates of simplified structural form (continued)

	Baseline model		Augmented model		
	$\begin{gathered} \text { I } \\ \text { OLS } \end{gathered}$	$\begin{gathered} \text { II } \\ \text { iSUR } \end{gathered}$	$\begin{gathered} \text { III } \\ \text { 2SLS } \end{gathered}$	$\begin{gathered} \text { IV } \\ \text { 3SLS } \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{iSUR} \end{gathered}$
d. Health					
Aid per capita	0.01	0.09***	0.11*	0.11*	0.11***
Primary schooling	-0.06	-0.08	0.06	0.06	0.06
Investment prices	0.00	0.00	-0.00	-0.00	-0.00
Air distance	-0.08	-0.09	0.06	0.06	0.06
HIV prevalence			-0.02**	-0.02***	$-0.02^{* * *}$
Landlocked			$-0.30^{* * *}$	$-0.30^{* * *}$	-0.30 ***
Ethnic fraction.			-0.14	-0.14	-0.14
e. Aid per capita					
Aid instrument	0.05***	0.05***	0.05***	0.05***	0.05***
Primary schooling	-0.43	-0.43	-0.59	-0.64	-0.63
Investment prices	0.00	0.00	0.00	0.00	0.00
Air distance	0.20	0.20	0.21	0.23	0.23
HIV prevalence			0.01	0.01	0.01
Landlocked			0.08	0.08	0.08
Ethnic fraction.			-0.76	-0.81*	-0.80*
N	78	78	78	78	78
R2 equation a	0.76	0.71	0.70	0.70	0.69
R2 equation b	0.62	0.57	0.65	0.63	0.63
R2 equation c	0.87	0.86	0.87	0.87	0.87
R2 equation d	0.94	0.94	0.95	0.95	0.95
R2 equation e	0.36	0.36	0.39	0.39	0.39

significance: ${ }^{*} 0.1,{ }^{* *} 0.05,{ }^{* * *} 0.01$
Notes: columns report point estimates (beta coefficients) of the respective equations of the simplified full system - see Appendix A; estimator and model specification indicated by the column headings; all endogenous variables enter in standardized form; exogenous variables common to all equations are excluded; standard errors are robust for singleequation estimators (OLS and 2SLS) only.
Source: authors' calculations; see Appendix C for variable definitions and sources.

C Appendix: summary statistics and variable sources

The table below summarises the variables used in the analysis, the measurement scale employed and the original data sources (with source-variable reference code where available). Please see the notes at the end of the table for further details.

	N	Median	Mean	St. dev	Scale	Source	Reference code
Aid variables							
\quad Aid per capita	78	14.29	19.28	22.75	$[\mathrm{~A}]$	$[1]$	-
Aid / GDP	78	2.28	3.49	3.77	$[\mathrm{~A}]$	$[1]$	-
Generated aid instrument	78	62.52	62.26	12.13	$[\mathrm{~A}]$	$[2]$	-
Final outcomes							
\quad Real GDP growth per capita	78	1.68	1.73	1.79	$[\mathrm{~A}]$	$[3]$	rgdpchg
Agriculture, value added (\% GDP)	76	20.65	22.59	13.42	$[\mathrm{~A}]$	$[4]$	NV.AGR.TOTL.ZS
Industry, value added (\% GDP)	76	29.63	29.71	9.90	$[\mathrm{~A}]$	$[4]$	NV.IND.TOTL.ZS
Services, etc., value added (\% GDP)	76	48.72	47.71	9.66	$[\mathrm{~A}]$	$[4]$	NV.SRV.TETC.ZS
Poverty headcount at \$2 a day	64	43.30	45.39	29.72	$[\mathrm{~B}]$	$[4]$	SI.POV.2DAY
Poverty headcount at \$1.25 a day	64	21.65	28.35	24.03	$[\mathrm{~B}]$	$[4]$	SI.POV.DDAY
GINI index	65	44.19	44.46	7.87	$[\mathrm{~B}]$	$[4]$	SI.POV.GINI
Intermediate outcomes							
Investment in real GDP	78	17.18	18.53	10.30	$[\mathrm{~A}]$	$[3]$	ki
Private consumption in real GDP	78	68.36	70.02	19.95	$[\mathrm{~A}]$	$[3]$	kc
Government consumption in real GDP	78	16.60	18.04	8.41	$[\mathrm{~A}]$	$[3]$	kg
Revenue, excluding grants (\% GDP)	69	19.95	21.66	8.82	$[\mathrm{~A}]$	$[4]$	GC.REV.XGRT.GD.ZS
Health expend., public (\% GDP)	78	2.67	2.89	1.39	$[\mathrm{~A}]$	$[4]$	SH.XPD.PUBL.ZS
Education expend., public (\% GDP)	76	3.76	3.97	1.50	$[\mathrm{~A}]$	$[4]$	SE.XPD.TOTL.GD.ZS
Military expenditure (\% GDP)	77	1.91	2.34	1.70	$[\mathrm{~A}]$	$[4]$	MS.MIL.XPND.GD.ZS
Life expectancy at birth, total (years)	78	60.96	59.00	9.50	$[\mathrm{~B}]$	$[4]$	SP.DYN.LE00.IN
Infant mortality rate	75	67.48	71.78	35.38	$[\mathrm{~B}]$	$[4]$	SP.DYN.IMRT.IN
Death rate, crude (per 1,000 people)	78	11.05	11.92	4.62	$[\mathrm{~B}]$	$[4]$	SP.DYN.CDRT.IN

	N	Median	Mean	St. dev	Scale	Source	Reference code
Intermediate outcomes (contd.)							
Fertility rate (births / woman)	77	4.66	4.68	1.38	[B]	[4]	SP.DYN.TFRT.IN
Prevalence of HIV (\% of pop 15-49)	68	0.80	3.12	5.70	[B]	[4]	SH.DYN.AIDS.ZS
Consumer price inflation (\%)	77	10.31	52.69	150.30	[A]	[4]	FP.CPI.TOTL.ZG
Real interest rate (\%)	77	6.58	7.00	8.78	[A]	[4]	FR.INR.RINR
Domestic credit to private sector (\% GDP)	78	23.74	29.37	21.40	[A]	[4]	FS.AST.PRVT.GD.ZS
Av. years total schooling, 15+	72	4.89	5.01	2.10	[B]	[5]	BAR.SCHL.15UP
Av. years primary schooling, $15+$	72	3.64	3.49	1.42	[B]	[5]	BAR.PRM.SCHL.15UP
Av. years secondary schooling, 15+	72	1.35	1.37	0.72	[B]	[5]	BAR.SEC.SCHL.15UP
Control variables (exogenous)							
Income per capita	78	7.88	7.84	0.79	[C]	[6]	-
Sachs-Warner trade policy index	78	0.32	0.32	0.29	[C]	[6]	-
Life expectancy	78	51.99	52.88	9.77	[C]	[6]	-
Geographic features	78	-1.00	-0.55	0.77	[C]	[6]	-
Ethnic fractionalization	78	0.54	0.47	0.29	[C]	[6]	-
Primary eduction enrolment rate	78	0.67	0.65	0.29	[C]	[7]	p60
Coastal population density	78	30.36	101.25	358.82	[C]	[7]	dens65c
Malaria prevalence index	78	0.54	0.51	0.43	[C]	[7]	sa_mr
Price of investment goods	78	85.83	93.68	62.20	[C]	[7]	iprice1
Civil liberties	78	0.33	0.41	0.27	[C]	[7]	$\operatorname{civ} 72$
Air distance to major cities	78	8.47	8.41	0.50	[C]	[7]	airdist
Oil producer	78	0.00	0.36	0.48	[C]	[7]	oildummy
Landlocked	78	0.00	0.21	0.41	[C]	[7]	landlock

Scales: [A] full period mean (1970-2007); [B] latest end value only; [C] average of earliest start and latest end values; [D] initial value (1960s or early 1970s if the former unavailable).
Sources: [1] authors' calculations from OECD-DAC (www.oecd.org/dac/stats/idsonline; downloaded May 2009); [2] authors' estimates based on the method set out in Arndt et al. (2010b,a), using updated and cleaned OECD-DAC dataset; [3] Penn World Tables v6.3 (http://pwt.econ. upenn.edu) [4] World Bank, World Development Indicators and Global Development Finance (http: //data.worldbank.org/data-catalog; downloaded 20-12-2010); [5] World Bank, Education Statistics (http://data.worldbank. org/data-catalog; downloaded 20-12-2010); [6] Arndt et al. (2010b,a); [7] Sala-i-Martin et al. (2004).

[^0]: ${ }^{1}$ In our view, however, a negative overall assessment of aid effectiveness is not a fair reading of past research. For literature surveys and substantive analysis see Hansen and Tarp (2000, 2001); Dalgaard et al. (2004); Tarp (2006); Temple (2010); Arndt et al. (2010a); Mekasha and Tarp (2011)

[^1]: ${ }^{2}$ The factorization is given by: $P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i} P\left(x_{i} \mid p a_{i}\right)$ where the set $P A_{i}$ refers to the Markovian parents (direct antecedent variables) of x_{i} in the network (Pearl 2009).

[^2]: ${ }^{3}$ This is a special case of the general theorem due to Tian and Pearl (2002) which holds that a sufficient condition for identifying the causal effect of X on Y is that every path in a DAG between X and any of its children traces at least one arrow emanating from a measured variable.

[^3]: ${ }^{4}$ Note, this holds even if there is some unobserved correlation between the error terms of Y_{1} and Y_{2}.
 ${ }^{5}$ Of course, as the set \mathbf{Y} refers to intermediate outcome variables (e.g., infant mortality), it is difficult to conceive how such outcomes could be randomised in any feasible or ethical way.

[^4]: Notes: each cell of columns OLS, LIML and IPWLS reports the standardised coefficient on aid per capita from individual reduced form regressions in which the row variable enters as the dependent variable; adjacent columns report the corresponding probability that this is significantly different from zero estimation method is indicated by the column headings; aid treated as endogenous in LIML and IPWLS only; 'Prior' gives the a priori expected direction of the aid-outcome relationship; 'Hansen-J' gives the probability of the Hansen-J statistic from a LIML regression using three aggregated instruments; 'OLS/LIML' is the ratio of the respective point estimates minus one; all regressions include the same set of control variables (see text) and employ robust standard errors Source: authors' calculations; see Appendix C for variable definitions and sources.

[^5]: Notes: each cell of columns OLS, LIML and IPWLS reports the standardised coefficient on aid per capita from individual reduced form regressions in which the row variable enters as the dependent variable; adjacent columns report the corresponding probability that this is significantly different from zero; estimation method is indicated by the column headings; aid treated as endogenous in LIML and IPWLS only; 'Prior' gives the a priori expected direction of the aid-outcome relationship; 'Hansen-J' gives the probability of the Hansen-J statistic from a LIML regression using three aggregated instruments; 'OLS/LIML' is the ratio of the respective point estimates minus one; all regressions include the same set of control variables (see text) and employ robust standard errors.

 Source: authors' calculations; see Appendix C for variable definitions and sources

[^6]: ${ }^{6}$ Interestingly, the extent of the downward bias in the OLS estimates is by far the largest for growth. For other outcomes, such as poverty rates, although the OLS results remain biased, they continue to provide meaningful guidance as to the direction, size and significance of the impact of aid.

[^7]: ${ }^{7}$ For example, we do not address whether aid affects intermediate outcomes directly or indirectly via government spending. The latter is omitted primarily due to concerns regarding the validity of the instrument for this variable.
 ${ }^{8}$ In the systems estimates (only) we correct for a small number missing values, using predicted values from an OLS regression of the variable of interest against the full set of exogenous variables used in steps one and two. Results are not sensitive to the choice of interpolation method.
 ${ }^{9}$ This can be demonstrated by substituting the aid measure in the system with its instrument and dropping the corresponding equation for aid. Estimated by iSUR, this model gives almost equivalent results (available on request).

[^8]: ${ }^{10}$ HIV prevalence is chosen as it is an important determinant of average life expectancy in a number of countries. Despite the epidemic being most significant in sub-Saharan Africa, for which a dummy is included in all regressions, differences in prevalence rates within this region are largely determined by sexual behaviour and biological factors, rather than differences in incomes; see Buvé et al. (2002) for discussion.
 ${ }^{11}$ Estimates calculated using the reg3 command of Stata v11 with options 2 sl s, 3 sl s ireg3, and sure iterate respectively.

[^9]: Notes: all results taken from system estimates summarised in Appendix Table B. 2 - panel (a) refers to column II of Table B. 2 and panel (b) to column V of Table B.2; first column gives the direct effect of aid (per capita) on the channel of interest; second column gives the effect of the channel on growth; final column gives their product; 'overall' channel gives the column sum of the individual channels; all coefficients are expressed in standardised form; estimated t-statistics are given in parentheses, calculated under the assumption that the point estimates of the effects are independent.
 Source: authors' calculations; see Appendix C for variable definitions and sources.

[^10]: ${ }^{12}$ These effects are comparable as all endogenous variables enter the regressions in standardized form.

[^11]: ${ }^{13}$ Specifically, for the equivalent specification and estimator, Arndt et al. (2010b) report a coefficient of 0.42 on aid and a standard error of 0.19 for the period 1970-2000. The raw (unstandardized) coefficient corresponding to column VI of Table B. 1 is 0.30 , with a standard error of 0.18 .

[^12]: ${ }^{14}$ Compare the LIML results for the first row of Table 1 with the total effect estimated in Table 3.

[^13]: Source: authors' calculations; see Appendix C for variable definitions and sources.

