

Climate Change and Economic Development

James Thurlow

Guest lecture: University of Tampere, 22 March 2011

Climate change and development economics

- Development economics has traditionally focused on large-scale phenomena
 - Structural transformation (agriculture vs. non-agriculture)
 - Physical and human capital accumulation
 - Technical change and economic growth
- Climate change is another large-scale phenomenon
 - Economywide and long-term implications
 - Considerable uncertainty (esp. for large-scale investments)
 - May alter our policy prescriptions and development strategies
 - Stern suggests that CC will herald a "new industrial revolution"

Lecture outline

- 1. Climate change science From uncertainty to risk
- 2. Mitigation policy

Switching to low-carbon development

3. Impacts and adaptation strategies Building resilience to climate change

PART 1 Climate change science From uncertainty to risk

What is "climate change"?

There is a >90% chance that at least half of the observed warming is due to human-caused greenhouse gas emissions (IPCC AR4)

The "cone of uncertainty"

- Climate projections are produced by General Circulation Models (GCMs)
- There are about two dozen major GCMs (reflecting climate uncertainty)
- Models are used to reflect different global economic "emissions scenarios" (reflecting economic uncertainty)

• 50/50 split between uncertainty from science and economics

Wide variation at local scale between models

- Different GCMs give different results at the country-level
- Moreover, GCMs are often at too low a resolution for planning purposes (e.g., 2'x2')
- "Downscaling" projections to local areas has its own difficulties

Precipitation in 2100

NCAR

MIROC

Change in extreme weather events

Some regularities

- Warmer
 - Higher temperatures will be observed throughout the globe.
- Wetter
 - Precipitation globally is likely to increase due to speeding of the hydrologic cycle. The distribution of this increase is unknown.
 - Indeterminate affect on climate moisture index [CMI =f(P/T)].
- More intense
 - More intense rainfall and higher probability of extreme weather events (flooding, perhaps cyclones...).

Uses of history

- CC heightens the uncertainty under which governments and economists must design/prescribe policies
- Uses of historical experience
 - Future CC impacts are like past impacts with some modifications to the distributions
 - Future CC impacts are out of the historical domain and therefore require a different approach to analysis
- Models
 - Reduced form models using historical data
 - Deep structural models based on underlying science and knowledge of technology/biology and the economic system

Risk and uncertainty

- Knight (1921):
 - Risk refers to situations where the decision-makers can assign mathematical probabilities to the randomness which they face.
 - Uncertainty refers to situations when this randomness "cannot" be expressed in terms of specific mathematical probabilities.

Converting uncertainty into risk

- MIT has developed a probabilistic model (IGSM)
 - 70 uncertain parameters
 - 400 Monte Carlo simulations
 - Climate + socioeconomic scenarios
- Global policy is powerful:
 - Reduces mean (smaller impacts)
 - Reduces standard deviation (less uncertainty)
- Economists can use risk to identify robust policies

Source: MIT Joint Program http://globalchange.mit.edu/resources/gamble/

Five positions on global climate change

1. Denialist

Global warming is a myth (the science is wrong)

2. Skeptical scientist

Global warming is real, but humans aren't causing it

3. Skeptical economist

We are causing climate change, but we can't do anything about it

4. Pragmatist

We can and should doing things differently, but we should weigh these against other development objectives

5. Fundamentalist ("climate crazies")

We can and must stop climate change no matter what the cost

Areas of CC linked to development policy

• Mitigation policy

- Steps at the global level to reduce GHG emissions and climate change (uncertainty)
- <u>Case study</u>: South Africa and carbon pricing

Adaptation strategy

- Steps at the national level to reduce vulnerability to climate shocks and sustain economic development
- <u>Case study</u>: Mozambique impact assessment

PART 2 Mitigation policy Switching to low-carbon development

Global GHG emissions

- GHG emissions mainly come from burning fossil fuels and land-use change (i.e., clearing forests, etc.)
- Most historical emissions come from the OECD countries
- But most future emission growth will come from LDCs

Projected greenhouse gases emissions by region

Energy, emissions and development

Emissions = Energy use x Emissions per energy unit

- Energy use rises with income
- Reducing energy use in lowincome countries means slowing the development process

Source: Davies et al. (2011) *Notes*: Energy Use is measured in tons of oil equivalents.

- Energy emissions first rise and then fall with income
- Industrializing countries use cheaper dirtier energy
- Rich can afford clean technology

Global emissions and energy use in 2007

	Global CO ₂ emissions share (%)	Emissions per person (tons CO ₂)	Energy use per person (tons)	CO ₂ per ton energy use (tons)
World	100	4.5	1.8	2.5
Developed countries	46.6	12.5	5.2	2.4
United States	19.7	19.3	7.8	2.5
Euro area	9.0	8.2	3.8	2.2
Russian Federation	5.2	10.8	4.7	2.3
Japan	4.2	9.8	4.0	2.4
Finland	0.2	12.1	6.9	1.8
Developing countries	53.4	2.9	1.1	2.7
China	22.1	5.0	1.5	3.3
India	5.5	1.4	0.5	2.7
South Africa	1.5	9.0	2.8	3.2
Mozambique	0.01	0.1	0.4	0.3

US\$25 tax per CO₂mt transfers US\$220 billion from developed to developing countries each year (distributed on p.c. basis)

OR

US\$240 per person tax in developed countries

Source: Davies et al (2011).

Notes: Energy Use is measured in tons of oil equivalents.

Switching to low-carbon development

For lower-income countries... this means increasing energy use by adopting a more expensive package of investments that could slow economic growth.

For middle-income countries... this also means improving energy efficiency and possibly abandoning existing "dirty" investments.

Becoming more energy efficient

...means generating your income in less energy-intensive ways

GDP per unit of energy use

Source: World Development Indicators (2010). *Notes*: Energy Use is measured in tons of oil equivalents.

Policies to reduce GHG emissions

- Need to promote low-carbon energy use:
 - Invest in cleaner and renewable energy resources (R&D)
 - Promote energy awareness and efficiency
- But ultimately you have to correct the market failure (negative externality) by <u>pricing carbon</u>
 - Cap-and-trade scheme and/or carbon tax
- Carbon tax choices (multilateral vs. unilateral mitigation):
 - Production-side: Only tax fossil fuel use (leads to leakage)
 - Consumption-side: Border tax adjustments (avoid loss of competitiveness when you're the only country mitigating)

Case study: South Africa

- Middle-income country (US\$ 5,930 p.c. | US\$ 9,950 p.c. PPP)
- Mineral-rich (over 100 years of remaining coal resources)
 - Cheap coal-fired electricity (and coal-to-liquid petroleum)
 - Economic development historically based on mining and heavy industry
- Dirtiest non-oil producing developing country (excl. island states)
- Persistent poverty, inequality and underdevelopment
 - 25% unemployment rate
 - One of the highest Gini coefficients (SA = 0.58 | Finland = 0.27)
- Currently debating introducing a carbon tax

Political economy of taxing carbon

- Business/Industry (esp. mining and metals)
 - Afraid of losing competitiveness in global and local markets
- Labor unions
 - Afraid of job losses and higher unemployment
- Civil society
 - Environmentalists want green economy
 - Developmentalists want low-cost electricity for poor households
- Government
 - Wants to meet global commitments and maintain international relations
 - Wants to be re-elected (by the poor and labor unions)
 - Needs growth to reduce unemployment

Measuring carbon intensity

Methods and data

- Need to consider direct and indirect carbon use
 - Direct use of fossil fuels and transformed energy (e.g., electricity and petroleum)
 - Plus indirect use of carbon embodied in other inputs (e.g., plastics)
- Multiplier analysis using supply-use tables
 - Carbon enters the system as fossil fuels (oil, gas and coal)
 - We track all upstream and downstream product flows to determine total (net) carbon use per unit of output or final demand
- Limitation: Implicitly assumes no demand response
 - Carbon tax would change prices and influence consumer demand
 - So this is a "situation analysis" rather than a "policy simulation"

Measuring carbon intensity

Results: Exports and employment

- South Africa is a large net exporter of carbon (2.5x imports)
 - Metals and mining exports would be affected most by a carbon tax
- Carbon-intensive sectors are less labor-intensive •
 - So unlikely to be big employment effect (but transition costs for unions)

Relation to exports

Relation to employment

Measuring carbon intensity

Results: Household carbon use

- Household emissions are below national average but unevenly distributed across income groups
 - Poorest 20% of population (0.3 tons of CO_2 pc \approx Benin)
 - Richest 4% of population (37.8 tons of CO_2 pc \approx Kuwait)
- But middle-income households are the dirtiest (just like countries)

Economic impact of a carbon tax

Methods and data

- Recursive dynamic CGE model
- Detailed energy sector (primary fuels and transformation)
- Final users
 - 46 sectors (representative firms)
 - 14 household income groups
- R200 carbon tax (US\$28)
- Government sector
 - CT generates
 public resources
 - Assume revenue neutral (reduce VAT)

Economic impact of a carbon tax

Results: electricity sector investment

- Investments are only partly an economic decision
 - Capital lasts a long time (so limited flexibility)
 - Reducing emissions beyond threshold levels means abandoning working capital
- New build plan is expensive (US\$30bil. = 11% of 2005 GDP)
- It also misses emission targets
 - 2020 = -4% (target is -34%)
 - 2025 = -18% (target is -42%)
- So carbon tax must do the rest

Economic impact of a carbon tax

Results: Total emissions

- Gradually introduce a carbon tax from R20 in 2012 to R200 in 2022 (initial collections for R200 tax = 5% of GDP in 2005)
- Meets emissions reduction targets

Total emissions, 2005-2030

Economic impact of a carbon tax *Results: Economic growth*

- Carbon tax reduces economic growth, but only slightly
 - Returns on fixed capital declines
 - Takes time/resources to shift into less carbon-intensive sectors
 - Lower profits and savings (and hence reduced investment)

Total GDP losses from carbon tax, 2005-2030

Economic impact of a carbon tax *Other key findings*

- Foreign (retaliatory) border taxes are as negative as the carbon tax
- Domestic border taxes reduce negative impacts
 - Avoids loss of competitiveness against imported goods
 - Maintains export competitiveness of carbon-intensive goods
- Net impact depends on how tax revenues are recycled
 - Using funds to raise public/private investment is growth-enhancing
- Gradual introduction of CT is as effective as a big-bang approach
 - Gives local economy time to adjust their capital allocations
- Impacts on employment and households are small
 - But tax is slightly regressive
 - Structural transformation means short-term job losses

Challenges for economic development (1)

- Mitigation is necessary but it requires countries to...
 - use cleaner energy early in industrialization
 - BUT this has expensive start-up and opportunity costs
 - May have to abandon working capital (e.g., coal plants)
 - Must borrow abroad to finance new investments (e.g., nuclear)
 - Using imported technology raises operations/maintenance cost (e.g., solar)
 - Most LDCs still need massive social and infrastructure investments

- not use their natural resources

- BUT this can slow economic growth by not using cheap energy options
- AND this involves politically difficult policies (e.g., South Africa's carbon tax)
 - Higher electricity prices
 - Job losses during the transition period

Challenges for economic development (2)

- Financing global mitigation and "high-cost" development
 - Who should pay for developing countries to reduce GHGs?
 - How should global carbon tax funds be distributed?
 - Locally, within the country where they were collected
 - Globally, based on existing emissions shares
 - Globally, based on per capita emissions
 - Some efficiency-based measure (GDP per energy unit)
- What if there is no global agreement to cut emissions?
 - Should countries be allowed to introduce border-tax adjustments?
 - On the carbon embedded in imports (might lead to trade war)
 - With rebates on the carbon within exported goods ("passing the buck")

PART 3

Impacts and adaptation strategies Building resilience to climate change

"Climate proofing" development strategies

- Most developing countries are "climate-takers"
 - Domestic mitigation will not stop global climate change (i.e., like a smallcountry assumption)
- Low-income countries will have to adapt to climate change, even though they have not contributed much to global emissions
 - They may benefit from new and/or "late-mover" technologies (e.g., cell phones and solar energy)
 - But adapting to climate change is likely to require a more *expensive*, *skill-intensive* development strategy

Mozambique

- Low-income country (US\$ 370 p.c. | US\$ 790 p.c. PPP)
 - Very little infrastructure and low productivity after years of civil war
- Extremely favorable agro-ecological conditions
 - Large country with lots of uncultivated land (but would need clearing)
 - Most of the population are small-scale subsistence farmers
- Supposedly one of the five most vulnerable countries to climate change (based on donor assessments)
 - Long coast-line and at the end of the Zambeze river delta
- Widespread and severe poverty
 - 75% of the population live on less than US\$ 1.25 per day

Integrated modeling framework

Four climate change scenarios

- Global wettest and driest scenarios
- Local wettest and driest (i.e., for Mozambique)
- Selected using "Climate Moisture Index" (CMI)
 - Global wet/dry are actually dry/wet scenarios for Mozambique
 - Global dry scenario is very wet scenario for Zambezi River Basin and Southern Africa
- Must use multiple GCMs
- Must take regional approach

Scenario	СМІ
Global wet	-0.6
Global dry	+9.3
Local wet	+33.0
Local dry	-58.6

Biophysical impacts

Agriculture and crop yields

- CLICROP models: 14 crops in 3 sub-national regions
- Captures daily T and P effects, water-logging and irrigation water demand (exclude CO₂ fertilization)

	Global Wet	Global Dry	Local Wet	Local Dry
Cassava				
North region	2.01	-3.44	-0.09	-6.51
Center region	-4.75	-6.24	-3.10	-6.21
South region	-9.36	-3.27	0.36	-3.20
Maize				
North region	1.27	-1.32	-2.92	-1.87
Center region	0.34	0.64	-3.04	-5.59
South region	3.49	6.37	-4.36	-3.95

Average change in yield from baseline, 2041-2050 (%)

Biophysical impacts

Flooding and road infrastructure

- CLIRUN: River basin models predict change in flood RPs
- CLIROAD: Captures P, T and flood damages on roads
- Global Dry has most flooding (regional basin effect)
- This damages roads more than in other scenarios

	Change in national road		
	network length relative to		
	baseline, 2050 (%)		
Global Wet	-16.1		
Global Dry	-22.4		
Local Wet	-11.9		
Local Dry	-2.1		

Biophysical impacts

Hydropower generation

- IMPEND model determines hydropower generation based on streamflow and installed/planned investments
- Hydropower declines in all scenarios, but Mozambique remains a net energy exporter regardless

		Change from baseline (%)			
	Baseline	Global Wet	Global Dry	Local Wet	Local Dry
2003-2010	13,533	1.09	0.26	-3.07	-5.31
2011-2020	17,391	-2.35	-0.55	-7.36	-6.62
2021-2030	26,991	-1.82	0.40	-5.30	-6.75
2031-2040	26,087	-3.94	-0.62	-8.08	-7.26
2041-2050	25,479	-3.37	-0.98	-4.15	-12.04

Average annual production (Giga watt hours per year)

Dynamic CGE model

Detailed economic structure:

- 4 regions (3x rural, urban)
- 33 sectors (17 in agriculture)
- 7 factors (3x land, 3x labor, capital)
- 20 households (rural/urban quintiles)

Recursive dynamic:

- Capital accumulation on past investment
- Exogenous TFP (linked to sector models)
- Autonomous adaptation ("typical farmer")

Baseline "no climate change" scenario

- Baseline specifies a future scenario reflecting development trends, policies, and priorities without climate change.
- Assumes a reasonable trajectory for growth and structural change until 2050 (e.g., falling agricultural GDP share).
- Consistent with sector models' baselines (i.e., CGE captures individual baselines and their interactions within a market economy)

3.7% average annual GDP growth

Economywide damages

- Effects of climate change are negative and grow with time
- Large declines in national welfare by 2050 (-18.2% in Global Dry)
- Wide variation in impacts across CC scenarios
- In worst scenario adaptation cost is US\$7 billion (\$390 mil. p.a.)

Cumulative deviation in total absorption, 2003-2050 (5% discount rate) 8 \$6.9bil. US\$ billion (const.2003) 6 2040s 2.4 \$4.7bil. \$4.2bil. 2030s 4 1.7 2.0 2020s \$2.1bil. 1.4 2010s 2 1.5 2000s 1.0 0.9 0.6 0 Global dry **Global wet** Moz dry Moz wet

Decomposition of impact channels

- Road network is the main impact channel due to major flooding within the trans-boundary river basin.
- Crop yield damages are most severe in Local Dry scenario.
- Hydropower reduces surplus energy exports but not welfare.

Cumulative deviation in total absorption, 2003-2050

- Declining hydropower generation
- Deteriorating transport system
- Falling crop yields and rising sea levels

Adaptation investments

Step 1: Transport system investments

 Sealing unpaved roads reduces worst case CC damages by 1/3 with little or no additional costs (i.e., advisable even without CC).

Step 2: Irrigation investments

 1 million hectares of new irrig. land only slightly reduces CC damages.

Step 3: Agricultural R&D or education investments

- Raising agricultural productivity by 1% each year offsets remaining damages (e.g., further 50% maize yield increase by 2050).
- Providing primary educ. to 10% of the 2050 workforce also offsets damages.

Reduction in CC damages, 2003-2050

Exactly offsets worst CC scenario (Global dry)

Key results from the case study

- Without public policy changes, the worst scenario results in a net present value of damages of nearly US\$7 billion.
 - Equal to an annual payment of US\$390 million (5% discount rate).
- Hardening rural roads reduces worst case impacts substantially, restoring approximately 1/3 of lost absorption.
- Remaining welfare losses could be regained with improved agricultural productivity or human capital accumulation.
- Investments costs required to restore welfare losses are subject to debate, but are reasonably less than US\$390 million per year over 40 years.

General recommendations

- Best adaptation to CC may be more rapid economic development leading to more flexible and resilient society.
 - Adaptation strategies should reinforce development objectives
- But climate-specific interventions include:
 - Regional adaptation strategies (e.g., river basin management)
 - Agricultural research & extension ("no regret" option)
 - Seal unpaved roads (makes sense even if no CC)
 - Soft adaptation where possible (e.g., land use planning: most capital in lowincome countries has not yet been invested)
 - Hard adaptation should be scrutinized (e.g., dykes may reduce risk but increase exposure)

Lecture summary (1)

• Climate change science

- Heightens uncertainty for policy makers and researchers
- We should focus on extreme events (i.e., droughts, floods, etc.)
- Science is advancing its projections (from uncertainty to risk assessments)

Mitigation policy

- LDCs should search for cleaner sources of energy (less emphasis on them reducing energy use)
- Reducing carbon use often means a new form of structural transformation
- Low carbon development may mean not using your natural resources, and hence adopting a more expensive development strategy
- Carbon pricing is necessary and effective, but it's also politically difficult (esp. if a country acts alone)

Lecture summary (2)

• Adaptation strategies

- Faster economic development is a form of adaptation
 - Building a better-educated, more flexible and resilient society
- But there are policies/investments specifically needed to reduce climate vulnerability
 - Sometimes its "doing things differently", rather than "doing different things"

Way forward for dev. economics

- Development economics must address the challenges posed by climate change
 - Climate science is progressing, and so must our development toolkit
- Three areas where more research is needed:
 - Work across disciplines (the devil is in the details)
 - Engineers, agronomists and scientists
 - Very important for large-scale lumpy investments (e.g., energy, infrastructure)
 - Incorporate risk into our policy prescriptions
 - Qualify our prescriptions with probabilities on returns
 - Model autonomous adaptation at firm/farm/household level
 - No more "dumb" or "genius" farmers in our models