Differences in Educational Outcomes of Primary School Pupils: Giving Equal Opportunity to pupils with disabilities and pupils without disabilities in Sub-Saharan Africa

*Dossè Mawussi DJAHINI-AFAWOUBO and **Yaovi Innocento MAWUENA
*University of Lomé, Togo ; ** Université du Québec à Montréal (UQÀM), Canada

Introduction

- Children with disabilities continue to face enormous difficulties in accessing education, particularly in sub-Saharan Africa, despite the special attention given at the World level to people with disabilities
- Some studies have analyzed the effect of disability status on access to education, poverty, and access to employment in developing countries (Mitra et al, 2013 and Mizunoya \& Mitra, 2013 for example).
- But these studies did not consider differences in skills between students with disabilities and students without disabilities.
- This study aims to analyze the differences between pupils with disabilities and pupils without disabilities in terms of their proficiency in mathematics and in reading/language and it interaction with certain sociodemographic characteristics such as gender, socioeconomic status, and the location area, in sub-Saharan Africa.

Materials and methods

- Data from the sixth-grade database of the 'Programme d'Analyse des Systèmes Éducatifs" (PASEC, 2014) have been used
- This database contains information on 676 schools and 31,213 pupils across ten sub-Saharan African countries (Benin, Burkina Faso, Burundi, Cameroon, Chad, Congo, Côte d'Ivoire, Niger, Senegal, and Togo).
- The level of performance in reading and the level of performance in mathematics are the dependent variables and both were dummies
- Pupil disability status is the explanatory variable of interest
- The other explanatory variables are the pupil's personal characteristics such as age, gender, and pupil's work outside of school hours, socio-economic status, school characteristics, teacher characteristics and class characteristics.
- A binary logit model was used to analyze how disability status affects pupils' proficiency in mathematics and reading/language.

The estimated model to analyze the differences between pupils with disabilities and pupils without disabilities in terms of their proficiency in mathematics and in reading/language, and the interaction of disability with gender, socioeconomic status, and location area, is as follow:
$\operatorname{Prob}(\operatorname{Performance}=1 \mid X)=\alpha_{0}+\alpha_{1} D_{i}+\alpha_{2}$ group $_{i}+\alpha_{3}\left(D_{i} \times \operatorname{group}_{i}\right)+\alpha_{4} K_{i}+\varepsilon_{i}$
Where D denotes the disability status of the pupil; group, the sociodemographic group; K denotes all other explanatory variables

Results and discussions

- The disability situation seems to reduce the reading and mathematics skills of the students.
- All else equal, the chances of a pupil with a disability to achieve an adequate level of proficiency in reading decreased by more than 6 percentage points compared to pupils without a disability
- Similarly, the chances that a pupil with a disability will achieve an adequate level of proficiency in mathematics decreased by more than 7 percentage points compared to pupils without a disability
- The results also revealed that the effect of disability status on proficiency in mathematics differs by gender, location, and socioeconomic status, while the effect of disability status on reading/language skills differs only by socioeconomic status

Figure1: Descriptive statistics of pupils' proficiency levels in mathematics and reading / language

Table 1: Interaction effect of disability and sociodemographic groups

Variables	Sufficient level of proficiency in reading /language			Sufficient level of proficiency in mathematics		
	(1)	(2)	(3)	(4)	(5)	(6)
The pupil has a disability $=$ Yes	$\begin{array}{r} -0.061 \\ (7.27)^{* * *} \end{array}$	$\begin{array}{r} -0.084 \\ (11.62)^{* * *} \end{array}$	$\begin{array}{r} -0.059 \\ (7.98)^{* * *} \end{array}$	$\begin{array}{r} -0.028 \\ (3.63)^{* * *} \end{array}$	$\begin{array}{r} -0.062 \\ (8.67)^{* * *} \end{array}$	$\begin{array}{r} -0.012 \\ (1.85)^{*} \end{array}$
Gender of the pupil	$\begin{gathered} -0.013 \\ (2.17)^{* *} \end{gathered}$	$\begin{array}{r} -0.016 \\ (3.07)^{* * *} \end{array}$	$\begin{array}{r} -0.016 \\ (2.95)^{* * *} \end{array}$	$\begin{array}{r} 0.028 \\ (4.72)^{* * *} \end{array}$	$\begin{array}{r} 0.029 \\ (5.93)^{* * *} \end{array}$	$\begin{array}{r} 0.030 \\ (6.11)^{* * *} \end{array}$
Location area	$\begin{array}{r} 0.118 \\ (17.88)^{* *} \end{array}$	$\begin{array}{r} 0.118 \\ (17.87)^{* * *} \end{array}$	$\begin{array}{r} 0.123 \\ (16.39)^{* * *} \end{array}$	$\begin{array}{r} 0.073 \\ (10.43)^{* *} \end{array}$	$\begin{array}{r} 0.073 \\ (10.35)^{* *} \end{array}$	$\begin{array}{r} 0.087 \\ (10.82)^{* * *} \end{array}$
Belonging to the poorest SES	-0.033	-0.048	-0.033	0.004	-0.022	0.005
Disability crossed with the pupil's gender	$\begin{gathered} (5.41) * * * \\ -0.007 \\ (0.58) \end{gathered}$	(6.86)***	(5.38)***	$\begin{aligned} & (0.72) \\ & 0.010 \\ & (0.94) \end{aligned}$	(3.39)***	(0.83)
Disability crossed with belonging to the poorest SES		$\begin{array}{r} 0.052 \\ (4.41)^{* * *} \end{array}$			$\begin{array}{r} 0.089 \\ (8.33) * * * \end{array}$	
Disability crossed with location area			$\begin{gathered} -0.016 \\ (1.38) \end{gathered}$			$\begin{array}{r} -0.044 \\ (3.62)^{* * *} \end{array}$
Prob > chi2	0.00	0.00	0.00	0.00	0.00	0.00
Pseudo R2	0.18	0.18	0.18	0.12	0.13	0.13
N	28,199	28,199	28,199	28,199	28,199	28,199

Robustness checks

Table 2: ATT estimates by sociodemographic characteristics

Sociodemographicgroups	Matching methods											
	Nearest Neighbor			Stratification				Radius				
	Treated	Control	$\begin{aligned} & \text { ATT } \\ & (\%) \end{aligned}$	Treated	Control	$\begin{aligned} & \hline \mathrm{AT} \\ & \text { (\% } \\ & \hline \end{aligned}$			reated		Control	$\begin{aligned} & \text { ATT } \\ & (\%) \end{aligned}$
Sufficient level of proficiency in reading / language												
All	8,402	18,025	$\begin{aligned} & -5.9^{* * *} \\ & (0.007) \end{aligned}$	$8,402$					8,4		20,876	$\begin{aligned} & -6.9^{* * *} \\ & (0.006) \end{aligned}$
Sufficient level of proficiency in mathematics												
All		8,402	20,876	-1.0	8,402			,876			.0**	8,400
				(0.006)							005)	

Conclusion

- Governments should provide schools with the additional special facilities needed for the particular accommodation of pupils with disabilities
- governments in Sub-Saharan Africa should particularly target students living in rural areas and belonging to disadvantaged groups such as the poorest SES quintiles

