Strengthening Research Capacity: An Holistic Approach to Infrastructure Planning in Developing Countries

Amy Schweikert Institute of Climate and Civil Systems Climate Change & Development Policy Conference Helsinki, Finland 28-29 September 2012

Institute of Climate & Civil Systems

Understanding, Evaluating, and Analyzing the impacts - and adaptation options - of climate change on infrastructure

Background – Why Roads?

Roads & Development

- •2 km access to **all-season road**
- •Lower vehicle operating costs, reduced travel time, increased access for services such as education and healthcare

- •Higher economic return for (perishable) goods and travel to markets, **market knowledge** allows for more even price distribution
- "Poverty Trap" Critical mass of infrastructure

Introduction

Infrastructure Planning & Support System (IPSS)

- Analysis climate change impact on road and building infrastructure by year through 2100
- Developed originally for Mozambique; extended for work in Vietnam, China, South Korea, and Japan
- Current efforts in training and capacity-building for policy makers in Ghana and South Africa
- IPSS is created out of original concepts developed for the Economics of Adaptation to Climate Change (EACC) Project under the World Bank in 2009

"Analysis of Climate Change Impacts on Road Infrastructure in Developing and Developed Countries" (Chinowsky, et al) published in Engineering Project Organization Journal (2011)

Why Develop a System Like IPSS?

- Most previous work on climate change impacts on infrastructure is qualitative

 lacked specific costs, damages, adaptation options
- Give policy guidance for current and future planning
 - What impacts does road infrastructure have on development?
 - Is adaptation important?

4

Adapt vs. No Adapt Policy Approach

IPSS analyzes all infrastructure and climate scenarios according to policy perspectives

	ADAPT		NO ADAPT
•	Forward looking – perfect climate foresight	•	"Business as usual"
•	Applies design-life climate change projections to construction design	•	Assumes no adaptations are put into place – current design standards are used to build new roads and rehabilitate existing
•	Incurs up-front costs to adapt roads, avoiding life-cycle degradation		roads
		•	Costs incurred from increased
•	Range of GCMs: 25%, 50% (median), 75%		maintenance necessary to retain design
	and 100% (most extreme) climate scenarios		life of original structure as degradations are incurred from increased climate stress
•	Certain types of infrastructure can be chosen to be adapted or not adapted ("partial adapt analysis")		

Adapt vs. No Adapt Policy Approach

Some examples of the costs incurred:

ROAD TYPE	ADAPT	NO ADAPT
Paved	 Upgrade asphalt binder type (temp. increase) Increase drainage capacity (culvert size) 	 Increased rutting and cracking Increased washout and drainage infrastructure damages
Gravel	 Increase sub-base Increase drainage capacity Increase grading 	 Increased spot and annual maintenance required from damages Increased washout/loss of use
Unpaved	Upgrade to gravel road	 Increased annual and spot maintenance required Increased washout Loss of connectivity/usage

IPSS Components & Analysis

IPSS analyzes climate impact in six areas for a holistic approach

Areas of Analysis	Key Variables
Climate	Precipitation, temperature
Flooding	Runoff, intensity, infrastructure density
Environment	Carbon emissions, traffic, freight
Transport	Distance, road type, traffic, freight
Finance	Interest rate, duration of loan, finance type
Social	Poverty rate, population density, (optional) labour- intensive construction, road density, road type

Incorporated Data Sources

Climate data comes from internationally approved climate scenarios (Global Circulation Models [GCMs]). Can use Hybrid Frequency Distribution Models (HFDs).

Data & Methodology

Stressor-Response Functions:

- Flooding, Precipitation, Temperature
- Analyze existing climate
 vs. projected future
 climate
- Existing weather studies are used to estimate damages from climate changes

Flooding Step-Wise Damage Function

Climate Impact Costs for New Construction

Cp = (NTHRESH * SCI) * BPG

Where C_p = change in construction costs for paved and gravel roads associated with a climate stressor,

 N_{THRESH} = Number of precipitation or temperature thresholds exceeded

SCI = Stressor Cost Increase per threshold increase, and B_{PG} = base construction costs for paved or gravel roads.

Overview of User Experience:

Inputs, Outputs & Application

User Input Data

- Road Stock Inventory Data
 - Existing inventory and/or planned future inventory
 - Road class (primary, secondary, tertiary)
 - Road type (paved, gravel, unpaved)
 - Region (administrative area)

- Additional components require:
 - Population data and poverty rates
 - Traffic projections
 - Building inventory

IPSS_gui		
Uiscounting Discounting gui_mouse_overlay	R INPUT	
Current Admin:	Map Overlays- All On Admin Level Road Network Population Centers Tophographical	Select

Measurements of Impact (Output)

- **Total Cost**: The estimated costs of climate change impacts with an optional (user-defined) discount rate applied.
- **Opportunity Cost:** Percentage of new, secondary paved road inventory that could be built if money was not diverted to climate change (if climate change did not happen) through 2100, relative to country's existing roads
- **Maintenance Savings**: The amount incurred in savings on maintenance for upgraded roads.
- Adaptive Advantage: The benefit (in savings, if it exists) between the Adapt and No Adapt policies.

Output

Excel workbook: Summary Costs for selected roads, time period

	QI3	• 0	Jx							
	Α	В	С	D	E	F	G	Н	l. I	J
1		_								
2	Road Costs	P	aved Gravel		Unpaved		Total			
3		Adapt	No Adapt	Adapt	No Adapt	Adapt	No Adapt	Adapt	No Adapt	
4	Flooding									
5	Climate									
6	Total (Combined)	\$-	ş -	Ş -	\$ -	ş -	ş -	ş -	\$ -	
7										
8			•							— — .
9	Selected Road Cost	ts - Adapt		Road Type		Selected Roa	d Costs - No Adapt		Road Type	
10	(USD Millio	n)	Paved	Gravel	Unpaved	(US	D Million)	Paved	Gravel	Unpaved
11	2030					2030				
12		25th					25th	ļ		
13	Avg Annual Cost (USD	50th				Avg Annual	50th			
14	Millions)	75th				Millions)	75th			
15		100th				withonsy	100th			
16			2050					2050		
17		25th					25th			
18	Avg Annual Cost (USD	50th				Cost (USD	50th			
19	Millions)	75th				Millions)	75th			
20	•	100th				withonsy	100th			
21			2090					2090		
22		25th		Aug 0			25th			
23	Avg Annual Cost (USD	50th				Cost (USD	50th			
24	Millions)	75th				Millions	75th			
25		100th				withons)	100th			
20										

Output

Excel workbook: Detailed Costs for road type by administrative unit

Selected Road Cost	ts - Adapt												F	Road Type	
(USD Million)		Paved Primary Paved Sec				Paved Secor	nda	idary Pav			ed Tertiary			iravel Primary	
		Climate	Flood	Total	Climate	Flood	_	Total	Climate	Flood	Total	Climate	Flood	Total	
2030															
	25th														
Avg Annual Cost	50th														
(USD Millions)	/5th														
2050	100th														
2050	25th				1	1			<u>г г</u>						
Ave Annual Cost	50th														
(USD Millions)	75th				+	-			<u> </u>		D				
(000)	100th						4	/	1	Deede	D danab (duct	A A HILL D	anda Ar		
2090						·				Koads - /	Adapt (ŞUSL) MILLION K	oads - Ad	зарт кімі с	
	25th					· · · · ·	2	Abura-Asebu-K	wamankese			0		0.	
Avg Annual Cost	50th						3	Accra				0.05		0.	
(USD Millions)	75th					4	4	Adaklu Anyigbe			0.03		0.		
	100th					4	5	Adansi North		0					
							6	Adansi South				0.01		0.	
lasted Band Caste	No. Adapt						7	Afigya Sekyere				0			
	- NO Adapt	Paved Primary Paved Sec		Paved Sect	8	Afram Plains			0.04		0.				
(USD Willing	лı)	Climate	Flood	Total	Climate	Flood	9	Agona		0.01		0			
2030						1	10	Abafo Ano Nor	th			0.96		6	
	25th						11	Abafa Ana South			0.36		i 2.		
Avg Annual Cost	50th						12	Anaro Ano South		0.30		0.50	2.		
(USD Millions)	75th						12	Ananta west				0.02		0.	
	100th					1	13	Ajumako-Enyan-Esiam			0		0.		
2050						1	14	Akatsi				0.06		0.	
	25th					1	15	Akwapim North	ı			0.14		0.	
Avg Annual Cost	50th					1	16	Akwapim South	ı		0				
(USD Millions)	75th					1	17	Amansie Centra	al			0.01		0.	
	100th					1	18	Amansie East				0.02		0.	
						1	10	Amancia West				0			

Output

Graphical display of uncertainty from GCM and/or cost variations from Adaptation Policy

Adapt

\$28

\$33

\$39

10-Country Study

- Six GCMs chosen to compare the absolute and relative impact of climate change on road infrastructure in ten countries
- **Developing Vs. Developed**: Showed significant differences between countries
 - %GDP
 - Opportunity Cost

Pan-African Analysis

"Adaptation Advantage to Climate Change Impacts on Road Infrastructure in Africa Through 2100" (Chinowsky, et al, 2011) <u>Climatic Change</u>

Total Cost (\$USD)

Opportunity Cost (%)

Pan-African Analysis

"Adaptation Advantage to Climate Change Impacts on Road Infrastructure in Africa Through 2100" (Chinowsky, et al, 2011) <u>Climatic Change</u>

Country	Planning Approach	Total Cost (Millions USD)	Opportunity Cost	Kilometres Lost
Malawi	Adapt	156	38%	2,660
Walawi	No Adapt	190	71%	4,960
Mozambiquo	Adapt	355	101%	5,760
wozambique	No Adapt	186	83%	4,720
Zambia	Adapt	739	60%	12,100
Zampia	No Adapt	547	66%	13,320

Adapt Savings

Vietnam: Road Infrastructure

• Included sea level rise

Avg. Range of **Total Cost** estimates: **USD\$3.6 – \$7.2 billion / annum** (Mean GCM: **Opp. Cost of 92%**)

Next Steps

Expanding to include other types of infrastructure

Preliminary study on 4 Asian Countries - Results from South Korea

1%

(NA)

%

5%

2%

1%

	INSTITUTE
CLIMA	TE & CIVIL SYSTEMS

Minimum

\$

128

\$

74

Summary

- Capacity building is critical in extending considerations for road investments and adaptation
- Adaptation and mitigation can drastically reduce impacts
- Opportunity costs must be considered when evaluating climate change impacts

Thank you!

Amy Schweikert Institute of Climate and Civil Systems amy@clicslab.org

