

6/9/2023

Tax Effort Revisited

Kyle McNabb / Michael Danquah / Abrams ME Tagem

Introduction

- Background & Context
- Literature
- Estimates
- Results
- Biases & Limitations
- Conclusions

United Nations University World Institute for Development Economics Research

wider.unu.edu

Motivation: "Tax Effort"

- Motivation: Concern over estimation methods employed in existing tax effort studies
- We don't re-invent the wheel but revisit existing findings.
- Employ new data and improved methods, attempt to better estimate tax effort for a larger sample of countries than before
- We find (think) that prior approaches have substantially under-estimated tax effort and been subject to biases from outlying observations in the input data
- Potentially important implications for the take-aways and interpretation of results.

Background: "Tax Effort"

- What is Tax Effort?
 - Ratio of actual tax collected to "potential" tax collected

Tax Collected Tax Potential

- Challenge at hand: how to best estimate tax potential
 - Tax Effort figures are often
 - cited in donor /advisory reports;
 - used as evidence to encourage LIC govt's to enhance tax collection
 - Thus, important that they are estimated as 'accurately' as possible and thus advice is grounded in realistic expectations regarding revenue mobilization
- Tax Effort estimates come with several important limitations more later

Literature I

- Rich literature estimating determinants of tax ratio cross-country since (at least...) Oshima (1957)
- Traditionally/Initial studies, OLS / FE regression of Tax Ratio on
 - GDP per capita, Openness, Share of agriculture / manufacturing in GDP, Resource wealth
- Studies increasingly attempt to understand the role of demography and governance
 - Urbanization rates, human capital indices etc.
 - Control for corruption, democracy, etc. (WGI)
- More recent studies have moved to estimating tax effort according to Stochastic Frontier Analysis (SFA).

Literature II

- SFA studies
- Fenochietto and Pessino (2010; 2013), Langford and Ohlenburg (2016); Mawejje and Sebudde (2019).
- "Production Function" approach; estimated "tax frontier" represents theoretical maximum amount of tax a country could collect, *given the inputs in the model*.
- In SFA approach, the difference between tax collected and the tax frontier is broken into a random error and an inefficiency term.

SFA: Concepts

Estimation of the Stochastic Tax Frontier

We first estimate the STF according to 4 different models by maximum simulated likelihood

- (i) Pooled Model (**Pooled**)
- (ii) Random effects (**RE**) (Pitt & Lee, 1981)
- (iii) Battese and Coelli (**BC**) (Battese and Coelli, 1995)
- (iv) True Random Effects (TRE) (Greene, 2005)

Then compute the tax effort scores

Key q is which specification / approach is 'best' ?

Distribution of results in Comparison

Distribution of Tax Effort scores shown, according to model employed

161 countries, 1980-2019

Results: Preferred Specification

- **TRE** stands out; More right-skewed and tighter variance. **Why?**
- We find that the TRE model is better able to disentangle inefficiency from unobserved time-invariant heterogeneity.
- The RE, BC models are not able to do this to the same extent, and thus time-invariant unobserved heterogeneity ends up being attributed to inefficiency (and subsequently, a lower tax effort score).
- This is a substantive limitation of the BC and RE models, with implications for their interpretation and use!

Results: Avg. Tax Effort scores

- The average (global) tax effort score according to TRE is 0.84
- Langford and Ohlenburg (2016):
 0.64 avg. tax effort
- USAID CTD
 0.51 avg. tax effort
- Tax potential (T/T.E.) via TRE is 20.91% of GDP (2019).
- This represents an average increase of around 3.26% of GDP.

Region / Income group	TRE	Total tax (current)	Tax potential (TRE)
LIC	0.84	12.31%	14.52%
LMIC	0.82	16.00%	19.79%
UMIC	0.84	18.06%	21.51%
HIC	0.87	21.80%	24.73%
East Asia & Pacific	0.81	16.70%	19.91%
Europe & Central Asia	0.87	23.55%	27.15%
Latin America & Caribbean	0.88	16.47%	18.63%
Middle East & North Africa	0.82	10.67%	13.07%
North America	0.87	23.36%	26.90%
South Asia	0.83	15.01%	17.89%
Sub-Saharan Africa	0.82	14.90%	18.43%
World average	0.84	17.65%	20.83%

Results

TRE (horizontal) vs **BC** model from USAID Collecting Taxes Database:

Again, see that the scores have a tighter variance and are, on average, a lot higher

Examples of bias in existing estimation methods

Importance of understanding the inputs of the model

- E.g. Slovakia:
- Slovakia collects ~ 19.8% of GDP (excl. social security)
 - **BC** estimate of TE is **0.36**. Suggests Tax Potential is 55% of GDP.
 - **TRE** estimate of TE is **0.85**. Suggests Tax Potential at 22.3% of GDP.
- Look at input variables, none are particularly extreme, save for Trade (% GDP), where it is ranked 9th in the world (over 200% in 2022).

Examples of bias in existing estimation methods

- Burundi (2019) collects ~ 13.7% tax : GDP (excl. social security)
- The BC estimate of tax effort is 0.97, suggesting tax potential is just 14.1% of GDP.
- None of underlying input variables show particularly extreme values, save for the urbanization rate, where Burundi ranks bottom of every country in the sample at just 11.8 per cent.
- Again, the estimate of TE appears skewed by extreme values of just one input variable.

Limitations & Concluding Remarks

- Our results suggest that recent SFA estimates of TE have, in many cases, been substantial under-estimates.
 - Primarily, this is due to the methodology employed & sensitivity to outlying observations
- Where these scores have previously entered policy dialogues, this is potentially misleading.

TE in the wider context

- TE scores represent a potentially useful piece of evidence, but shouldn't be solely relied upon. They are very high-level.
- Other pertinent evidence that can play complement to build a more complete picture / diagnostic:
 - Tax Expenditure analysis
 - VAT Gap analysis
 - Distributional analysis etc.
- They likely mean something different in HICs to LICs

www.wider.unu.edu Helsinki, Finland

Estimation of the Stochastic Tax Frontier

 T_{it} is the (observed) tax-to-GDP ratio for country *i* at time *t*.

 $f(X_{it};\beta)$ is the production function; vector of inputs, **X**, is used to generate tax revenue **T**;

 β is the vector of parameters to be estimated.

$$T_{it} = f(X_{it};\beta) \cdot \xi_{it} \cdot e^{v_{it}}$$

 $0 < \xi_{it} < 1.$

Tax collection is also subject to a series of random shocks, $e^{v_{it}}$

 $T_{it} = f(X_{it};\beta)$

 $\xi_{it} = 1$ is where the tax authorities are collecting the maximum potential tax revenue, given the underlying factors captured in *X*

 ξ_{it} < 1 describes a situation where there is inefficiency in the process of tax collection, and *T* is less than potential.

Estimation of the Stochastic Tax Frontier

$$q_{it} = \alpha + \beta' x_{it} + v_{it} - u_{it}$$

 $q_{it} = \ln\left(\frac{T_{it}}{Y_{it}}\right)$

$$q_{it} = \alpha + \beta' x_{it} + \vartheta_c z_{it,c} + v_{it} - u_{it}$$
$$u_{it} = \vartheta_e z_{it,e}$$

UNITED NATIONS UNIVERSITY UNU-WIDER V-u is a composite error term, incorporating both a random error and the inefficiency in tax collection

Also want to account for heterogeneity in collection via observed factors (**z**).

Can influence *q* directly or be a driver of the inefficiency term (no consensus).