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The adjusted headcount ratio M0 developed by Alkire and Foster (2011a) is increasingly 
being applied by countries and international organizations to measure multidimensional 
poverty. Three properties are largely responsible for its growing use: subgroup 
decomposability, by which an assessment of subgroup contributions to overall poverty can be 
made, thus facilitating targeting; dimensional breakdown, by which an assessment of 
dimensional contributions to overall poverty can be made, after the poor have been identified, 
thereby facilitating coordination; and ordinality, which ensures that the method can be used 
in cases where variables only have ordinal meaning. Following Sen (1976), a natural question 
is whether sensitivity to inequality among the poor could be usefully incorporated into this 
methodology. We provide several answers to this motivating question. We note that there are 
many existing measures that are sensitive to inequality but require the use of cardinal 
variables. We develop a new dimensional transfer axiom that applies to measures using 
ordinal data, and search for methods related to M0 satisfying this form of distribution 
sensitivity among the poor. An intuitive attainment count transformation is presented that 
converts unidimensional methods to multidimensional methods, and we show how both the 
original adjusted headcount ratio (used by Colombia) and an alternative version (used by 
Mexico) are obtained from unidimensional poverty gap measures. By replacing the poverty 
gap with any distribution sensitive measure we immediately obtain a multidimensional 
poverty method satisfying the dimensional transfer axiom. However, none of these examples 
satisfies the dimensional breakdown axiom. A general impossibility theorem explains why 
this is so: no multidimensional poverty methodology can simultaneously satisfy the 
dimensional transfer axiom and the three original properties. We propose alternative 
approaches that can capture some aspects of inequality without sacrificing the properties that 
make the adjusted headcount ratio so useful. The methods are illustrated with an example.  
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1.  Introduction 
 

There is by now much evidence that the multidimensional poverty methodology of Alkire 

and Foster (2011a) is well suited for real world policy applications – evaluating poverty over 

space and time, targeting poor populations and coordinating anti-poverty efforts among 

government agencies.1 The effectiveness of the methodology originates in the properties it 

satisfies, including subgroup decomposability (SD), by which an assessment of contribution 

of subgroup contributions to overall poverty can be made, thus facilitating targeting, and 

dimensional breakdown (DB), by which an assessment of dimensional contributions to 

overall poverty (after the poor have been identified) can be made, thereby facilitating 

coordination. A third property of ordinality (O) allows the adjusted headcount ratio, or M0 

from the associated Mα class of measures, to be used in the all too common cases where 

variables are ordinal or even categorical, thereby ensuring its broad applicability. 

 

A natural question to ask is whether inequality can be usefully incorporated into this form 

poverty measurement. Following Sen (1976), the literature on income (or unidimensional) 

poverty expresses the concern for inequality using a transfer principle that requires poverty to 

fall as result of a progressive transfer among the poor. This in turn has led to an array of 

distribution-sensitive income poverty measures satisfying this property.2 The analogous 

discussion in the multidimensional context must confront the fact that there are two 

competing notions of multidimensional inequality, leading to two distinct ways of conceiving 

of inequality in poverty. The first, linked most closely to Kolm (1977), generalizes the notion 

of a progressive transfer (or more broadly a Lorenz comparison) to the multidimensional 

setting by applying the same bistochastic matrix to every variable.3 This results in a 

coordinated “smoothing” of the distributions that preserves their means. The associated 

transfer principle for poverty measures requires poverty to fall, or at least not to rise, when 

such a smoothing is applied among the poor. 

 

                                                
1 See x and y (Examples that illustrate the effective use of the methods. Maybe one or two that use M1 or M2?) 
2 See Sen (1976), Clark, Hemming, and Ulph (1981), and Foster, Greer, and Thorbecke (1984) among others. It 
should be noted that a property depends on both the identification and aggregation steps. In unidimensional 
measurement, identification usually has a standard format, so we often say that the poverty measure satisfies a 
given property without explicitly specifying the identification method.  
3 A bistochastic matrix is a weighted average of different permutation matrices (each of which switches 
achievements around). When applied to an income distribution it ensures that each person’s transformed income 
is a weighted average of all the original incomes. See Foster and Sen (1997) or Alkire et al (2014). 
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The second form of multidimensional inequality is linked to the work of Atkinson and 

Bourguignon (1982), and relies on patterns of achievements across dimensions. Imagine a 

case where one person initially has more of everything than another person, and the two 

persons switch achievements for a single dimension. This can be interpreted as a progressive 

transfer that preserves the marginal distribution of each variable, and lowers inequality by 

relaxing the positive association across variables. The resulting transfer principle specifies 

conditions under which this alternative form of progressive transfer among the poor should 

lower poverty, or at least not raise it. 

 

Many multidimensional poverty methodologies satisfy one or both of these transfer 

principles.4 In particular, we have shown in Alkire and Foster (2011a) that the 

multidimensional measures Mα satisfy the first type of transfer principle for α ≥ 1 and the 

second type for α ≥ 0. Note, though, that the transfer properties in the multidimensional 

poverty literature are “weak” in that they allow poverty to remain unchanged in the face of a 

progressive transfer. In particular, the adjusted poverty gap measure M1, which is thoroughly 

insensitive to either form of transfer, satisfies both. It is possible to define associated strict 

versions of the properties that require poverty to fall as a result of a suitably strict progressive 

transfer, and to show that for α > 1 the measure Mα satisfies a strict version of the first 

transfer principle, while for α > 0 it can be easily transformed into a new measure satisfying a 

strict version of the second (as outlined in the paper).5 However, each of these measures 

violates property O, thus limiting its applicability in an important way. This leads to the 

following natural questions: Is it possible to formulate a strict version of distribution 

sensitivity – by which greater inequality among the poor strictly raises poverty – that is 

applicable to poverty measures that use ordinal data? And can we find measures satisfying 

this requirement and properties SD and DB, which have proved to be so useful in practice?  

 

This paper considers the possibility of constructing multidimensional poverty measures 

satisfying properties O, SD, and DB that also satisfy a strict form of distribution sensitivity 

called dimensional transfer (DT). This property follows the Atkinson-Bourguignon form of 

                                                
4 See, for example, Chakravarty, Mukherjee and Renade (1998), Tsui (2002), Bourguignon and Chakravarty 
(2003), Chakravarty and D’Ambrosio (2006), Maasoumi and Lugo (2008), and Bossert, Chakravarty, and 
D’Ambrosio (2013).  
5 See Alkire and Foster (2011a) p. 485, where it is noted that one could replace the individual poverty function 
Mα(yi;z) with [Mα(yi;z)]γ for some γ > 0 and average across persons. 
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distribution sensitivity, but with an additional proviso that poorer person is deprived in the 

dimension of the switch while the other person is not – so that the switch can be interpreted 

as the transfer of a deprivation to a better off person from a worse off one. Following Alkire 

and Foster (2011a) we show how to transform the adjusted headcount ratio M0 to obtain 

measures satisfying DT. We then generalize to obtain an intuitive procedure for constructing 

multidimensional measures from unidimensional measures by constructing an attainment 

count distribution and applying a unidimensional poverty measure.6 This transformation 

identifies the commonalities among the global Multidimensional Poverty Index (or MPI), the 

official Columbian MPI, and Mexico’s multidimensional methodology, namely, each can be 

viewed as a unidimensional poverty gap measure applied to the attainment count 

distribution.7 

 

A general theorem shows how this construction method effectively converts properties for 

unidimensional poverty measures into the corresponding properties for multidimensional 

measures. For example, monotonicity of an income poverty measure ensures that the resulting 

multidimensional poverty measure satisfies dimensional monotonicity as defined in Alkire 

and Foster (2011a). SD likewise follows from the associated unidimensional property. To 

obtain multidimensional measures that satisfy DT, it turns out that any unidimensional 

measure satisfying the unidimensional transfer principle, such as the FGT measure, will do. 

Hence, it is straightforward to construct any number of multidimensional poverty measures 

that satisfying O, SD and DT: Any subgroup decomposable, unidimensional poverty measure 

satisfying the transfer principle will generate one. Unfortunately, it is also true that every one 

of these examples violates DB. We identify the reasons for the violation and prove an 

impossibility result that demonstrates the mutual incompatibility of the four properties. In 

words, the highly desirable and practical properties of subgroup decomposability, 

dimensional breakdown and ordinality together prevent a poverty measure from satisfying 

the dimensional transfer property. Given the key role played by O, SD and DB in the 

successful application of multidimensional methods, we support using methods satisfying the 

three, augmented by information that separately accounts for inequality. In particular, the 

adjusted headcount ratio, which is neutral with respect to the transfers in the DT property and 

                                                
6 A person’s deprivation score is the sum of the values of deprivations experienced by the person; the 
attainment count is the sum of the values associated with the remaining dimensions – those in which the person 
is not deprived. See section 4. 
7 See Alkire and Santos (2010, 2014) for a discussion of the global MPI. 
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satisfies the other three properties outright, can be used in conjunction with other indicators 

that convey information on the variability of deprivations (or attainments) among the poor. 

The methods are illustrated with an example. 

 

The basic definitions and notation used in this paper are given in Section 2 while Section 3 

describes the key properties for multidimensional poverty measures. Section 4 presents a 

series of measures satisfying the dimensional transfer property and describes a method of 

constructing multidimensional measures from unidimensional measures. A general theorem 

linking unidimensional and multidimensional properties is provided, which among other 

things shows how to construct multidimensional measures satisfying the dimensional transfer 

property. Section 5 presents the impossibility result and outlines some potential ways forward 

with the help of examples, while Section 6 concludes.  

 

2.  Notation and Definitions 
 

We begin with notation and definitions needed in the subsequent discussion. Let |v| denote 

the sum of all elements in any vector or matrix v, and µ(v) signify the mean of v, or |v| divided 

by the total number of elements in v. Let integer n ≥ 1 represent the number of persons, where 

n will be permitted to range the integers, and let i = 1,2,…,n, denote the typical person. Well-

being or poverty is reflected in the achievements from a fixed, finite number d ≥ 2 of 

dimensions, where the typical dimension is j = 1,2,…,d. Let y = [yij] be an n × d matrix of 

achievements, belonging to the domain Y = {y ∈ R+
nd : n ≥ 1} of matrices under 

consideration.8 The typical entry in y is yij ≥ 0. We use yi to signify the row vector of 

individual i’s achievements, and y∗j is the column vector that provides the distribution of 

dimension j’s achievements across people. A deprivation cutoff zj > 0 for dimension j is 

compared to achievement level yij to determine when person i is deprived in j, namely when 

yij < zj. The row vector of dimension-specific cutoffs is denoted by z. 

 

Poverty measurement has an identification step and an aggregation step. An identification 

function ρ: 𝑅!! × 𝑅!!!  → {0,1} is used to identify whether person i is poor, where ρ(yi; z) takes 

the value of one if person i is poor, and the value of zero otherwise. The identification vector 
                                                

8 We follow Alkire and Foster (2011) in assuming that achievements are represented as nonnegative real 
numbers, while deprivation cutoffs are strictly positive. Other assumptions are clearly possible, but are not 
explicitly covered here.  
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associated with y is the column vector r whose ith entry is ρ(yi; z), while the set of persons 

who are identified by ρ as being poor is denoted by Z ⊆ {1,…, n}. An index or measure of 

multidimensional poverty M: Y × 𝑅!!!  → ℝ aggregates the data into an overall level M(y; z) 

of poverty in y given z and the identification function ρ. The resulting methodology for 

measuring multidimensional poverty is given by M = (ρ, M). For any given dimension j, let 

Y.j be the set of all column vectors y.j of jth dimensional achievements. It will sometimes be 

useful to focus on y and y.j that are consistent with a given poverty status vector r. Let Yr 

denote the set containing all y that are consistent with r, and let Yrj denote the set of all 

dimension j vectors y.j that are derived from an achievement matrix y consistent with a given 

identification vector r. 

 

Alkire and Foster (2011a,b) identify and measure poverty using a vector of deprivation values 

and an overall poverty cutoff. Let wj > 0 denote the weight or deprivation value of j and let w 

be the row vector satisfying |w| = d. The poverty cutoff is denoted by k, where 0 < k ≤ d. For 

any person i, the deprivation score (or count) ci is the sum of the deprivation values wj across 

all dimensions in which i is deprived. The dual cutoff identification function ρk is defined by 

ρk(yi;z) = 1 whenever ci ≥ k, and ρk(yi;z) = 0 whenever ci < k. In other words, ρk identifies 

person i as poor when the deprivation count ci is at least k and i is not poor otherwise.9 Let 

Z(k) be the set of persons who are identified by ρk as being poor. At one extreme, when k = d, 

the function ρk becomes intersection identification, in which a person must be deprived in all 

dimensions to be poor. When 0 < k ≤ minj wj, it becomes union identification, in which a 

person need be deprived in only one dimension to be identified as poor. Thus, while our 

emphasis is on the intermediate cases, ρk includes the two limiting identification methods.  

 

Using deprivation cutoffs and values, we convert the matrix of achievements into a matrix 

focusing on deprivations. Let g0 = [

€ 

gij
0] denote the deprivation matrix whose typical element 

is given by 

€ 

gij
0  = wj when yij < zj, and 

€ 

gij
0  = 0 otherwise. In words, when person i is deprived in 

the jth dimension the associated entry 

€ 

gij
0  is the deprivation value wj; otherwise it is 0. Column 

vector g⋅ j
0  clearly indicates those who are deprived in dimension j, while the ith row vector of 

g0 is person i’s deprivation vector, denoted

€ 

gi
0 . Summing the values in 

€ 

gi
0  yields the 

                                                
9 As noted below it is also possible to use ci  > k in the definition of the poor. 
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deprivation count ci = |

€ 

gi
0 | as defined above, while further dividing by the maximal value d 

yields the deprivation share or score si = ci/d, from which the column vector s of deprivation 

scores is constructed. It lists the intensity (or breadth) of deprivation experienced by each 

person. 

 

The poverty cutoff k can be used to create a matrix focused on the deprivations of the poor. 

Let g0(k) denote the censored deprivation matrix whose typical element is given by 

€ 

gij
0(k) = 

€ 

gij
0  ρk(yi; z), which leaves the entries of the poor unchanged, while changing those of the 

nonpoor to zero.10 The column vector g⋅ j
0 (k) contains wj for every person who is both poor 

and deprived in dimension j, and 0 otherwise. Person i’s censored deprivation vector

€ 

gi
0(k) is 

the ith row of g0(k). The censored vector of deprivation shares s(k), given by si(k) = |

€ 

gi
0(k)|/d  

= ρk(yi;z)si for i = 1,…,n, differs from s in that the entries of the nonpoor are set to zero. 

 

The first poverty measure defined in Alkire and Foster (2011a) is the adjusted headcount ratio 

M0 = M0(y;z) = µ(g0(k)), or the mean of the censored deprivation matrix. It is the total value of 

all deprivations experienced by the poor as a share of the maximum total value of 

deprivations that would be obtained if everyone were fully deprived. M0 can be expressed as 

the product of two intuitive partial indices, the headcount ratio H and the average intensity of 

poverty, denoted A. The headcount ratio arising from dual cutoff identification is define as H 

= q/n, where q = Σi=1
n ρk(yi; z) is total number of poor persons identified by ρk. The average 

intensity is given by A = |s(k)|/q = (| g1
0 (k)|+…+| gn

0 (k)|)/(qd). It is easy to show that  

 M0 = (| g1
0 (k)|+…+| gn

0 (k)|)/(nd) = HA      (1) 

which offers a decomposition of the measure by population. In addition M0 can be broken 

down by dimension as follows: 

M0 = (| g⋅1
0 (k)|+…+| g⋅d

0 (k)|)/(nd)             (2) 

We will return to these two expressions below. 

 

Alkire and Foster (2011a) also define other measures that require more from the data – 

namely that each variable is cardinal – which ensures that the normalized gaps gij = (zj-yij)/zj 

                                                
10 Note that in the case of union identification, the censored and original deprivation matrices are identical. 
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of the poor are meaningful. In this case, the censored deprivation matrix g0(k) can be replaced 

by the matrix gα (k)  having as its typical entry gij
α (k) = gij

0 (k)((zj-yij)/zj) α for a given α > 0. A 

class of multidimensional poverty measures can then be defined by Mα(y;z) = µ(gα (k))  for α 

≥ 0. In particular the adjusted poverty gap M1 is sensitive to the depth of deprivation in each 

dimension, while the adjusted FGT or squared gap M2 emphasizes the largest normalized 

gaps, and is sensitive to a particular type of multidimensional inequality in the distribution of 

achievements. Since our present concern is with measures that satisfy ordinality, we focus on 

M0 in what follows.  

 

3. Properties 
 

The properties of a poverty measure specify the patterns in the underlying data the measure 

should ignore, the aspects it should highlight, and the kinds of policy questions it can be used 

to answer. This section presents properties for multidimensional poverty measures, focusing 

first on the traditional properties satisfied by M0 or, more precisely, by the methodology 

Mk0 = (ρk,M0) since properties are, in fact, joint restrictions on identification and aggregation. 

Only general descriptions of these properties are provided here; precise definitions and 

verifications can be found in Alkire and Foster (2011a). Two additional properties of Mk0 that 

were previously discussed, but have not yet received a rigorous treatment, are defined: 

ordinality, which ensures that the measure can be meaningfully applied to ordinal data; and 

dimensional breakdown, which allows poverty to be broken down by dimension after 

identification. We conclude with a new property - dimensional transfer - which ensures that 

poverty is sensitive to one form of inequality among the poor.  

 

The properties of multidimensional poverty methodologies can be divided into the categories 

of invariance, dominance, and subgroup properties. Invariance properties isolate aspects of 

the data that should not be measured. They include symmetry (invariance to permutations of 

achievement vectors across people), replication invariance (invariance to replications of 

achievement vectors across people), deprivation focus (invariance to an increment in 

nondeprived achievements), and poverty focus (invariance to an increment in an achievement 

of a nonpoor person).  
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Next are the dominance properties that concern the aspects of the data that should be 

measured, and ensure that the poverty level responds appropriately to certain changes in the 

achievements. They include weak monotonicity (an increment in a single achievement cannot 

increase poverty), weak transfer (a progressive transfer among the poor arising from the same 

bistochastic matrix in each dimension cannot increase poverty), and weak rearrangement (a 

progressive transfer among the poor arising from an association decreasing rearrangement 

cannot increase poverty).11  

 

Finally are the subgroup properties that connect poverty levels overall to levels obtained from 

data broken down by population subgroup or by dimension. Two of the key properties here 

are subgroup decomposability (overall poverty is a population weighted sum of the poverty 

levels in population subgroups) and subgroup consistency (if poverty rises in a population 

subgroup and stays constant in the remaining population, while subgroup population sizes are 

unchanged, then overall poverty must rise).  

 

For the purposes of this paper, we will take the above set of four invariance properties, three 

dominance properties, and two subgroup properties as the nine basic multidimensional 

properties. Below we discuss another dominance property from Alkire and Foster (2011), 

namely, dimensional monotonicity, which requires poverty to fall as a result of an increment 

that removes at least one deprivation from among the poor. We now present the three 

additional properties of multidimensional measure – respectively, an invariance property, a 

subgroup property and a dominance property – that are the special concern of this paper. 

 

3.1 Ordinality. The basic data used to construct the achievement matrix are typically derived 

from circumstances and conditions that are easy to describe and understand but have no 

natural metric in which to be measured. The numbers assigned to the various achievement 

levels (and deprivation cutoff) in this domain are in a real sense simply placeholders to 

convey information about how the levels stack up and, most importantly, whether they would 

be considered to be adequate or inadequate.12 The underlying achievement levels, the 

                                                
11 Note that weak monotonicity and especially weak transfer are suited for measures using cardinal data, where 
the degree of change in a given dimension has meaning. For measures like M0 using ordinal data, the size of 
increments or transfers cannot be meaningfully gauged and reflected through the measure’s value. Instead, they 
satisfy the property with equality.  
12 In fact, categorical information is all that is necessary in the present context. Even if the deprived 
achievements cannot be ranked one against the other, and the same is true for the achievements in the non-
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condition of deprivation, and its relative values in poverty, can be well understood and 

articulated even without the numbers of the representation being anything more than just 

placeholders. Note that this general line of argument may be true even for the cases where the 

variable has an “in-built” representation such as income or years of schooling, since the 

cardinalization that comes with the variable may not be the right one for reckoning gains and 

losses in the present context.13  

 

We say that (y'; z') is obtained from (y; z) as an equivalent representation if there exist 

increasing functions fj: R+ → R+ for j = 1,…,d such that y'ij = fj(yij) and z'j = fj(zj) for all i = 

1,…, n. In other words, an equivalent representation assigns a different set of numbers to the 

same underlying basic data while preserving the original order. The methodology Mk0 

satisfies the following invariance property, which embodies the concern that the measure 

should be independent of the way the underlying data are represented.14 

 

Ordinality (O): Suppose that (y'; z') is obtained from (y; z) as an equivalent representation. 

Then the methodology M = (ρ, M) satisfies ρ(y'i; z') = ρ(yi; z), for all i, and M(y'; z') =  

M(y; z). 

 

To see that Mk0 satisfies this property, note that the dimensions in which person i is deprived 

are unchanged between (y'; z') and (y; z), since the monotonic transformation ensures that y'ij 

< z'j whenever yij < zj. Consequently, the deprivation count is unchanged, which ensures that 

ρk(y'i; z') = ρk(yi; z) for all i. It follows that the associated censored deprivation matrices are 

identical, so that their means are the same, and hence M0(y'; z') = M0(y; z). Note that the since 

the gap and squared gap matrices are typically very different for equivalent representations, 

the methodology Mkα = (ρk, Mα) violates ordinality for α = 1, α = 2, and indeed any α > 0. 

Each of these makes use of cardinal information on the depth of deprivations. 

 

                                                                                                                                 
deprived category, one could use any numerical assignment that would correctly separate achievements into the 
deprived or non-deprived categories, with the deprivation cutoff being set at an appropriate value in between. 
The functions used below in the definition of equivalent representation need only preserve the categorical 
allocations. 
13 For a fuller treatment of scales and measurement see Stevens (1946), Sen (1973, 1997), Alkire et al (2014), 
and the references therein.  
14 We might imagine a weaker ordinality requirement that would only require the ordering, and not necessarily 
the measured level of poverty, to be preserved by equivalent representations.  
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3.2 Dimensional Breakdown. Multidimensional poverty by definition has multiple origins, 

and it is useful for policy purposes to have a method of gauging how each dimension 

contributes to overall poverty. For example, information on contributions of dimensional 

deprivations could help in the allocation of resources across sectors and the design of specific 

policies to address poverty; monitoring progress dimension by dimension can help clarify the 

underlying sources of progress.15 A thoroughgoing decomposition of poverty by dimension 

would require every dimensional component to be a function of that dimension’s distribution 

of achievements only, without reference to achievements in the other dimensions.16 However, 

a person’s deprivation in a dimension should only contribute to poverty when the person is 

poor, and this depends the person’s achievements in other dimensions through the 

identification function. Consequently, we consider a less exacting form of breakdown by 

dimension that allows the component function in a given dimension to depend on the 

distribution of that dimension’s achievements and on who is and is not poor, as determined 

by ρ(yi; z) for i = 1,…,n. Stated differently, when we limit consideration to the set Yr of 

achievement matrices having exactly the same poverty status vector r, overall poverty can be 

expressed as a weighted sum of dimensionally determined components.17 As before, for any 

given dimension j, let Yrj denote the set of all achievement distribution vectors y.j from some y 

in Yr. 

 

Dimensional breakdown (DB): For any given poverty status vector r, there exist vj > 0 

summing to one, and functions m.j: Yrj ×
dR ++ → R for j = 1,…, d, such that 

 M(y; z) = v1 m.1(y.1; z) +… + vd m.d(y.d; z)     (3) 

for all y in Yr.  

 

In words, after identification has taken place and the poverty status of each person has been 

fixed, multidimensional poverty can be expressed as a weighted sum of dimensional 

components. The contribution of the deprivations in the jth dimension to overall poverty can 

then be viewed as vj m.j(y.j; z)/M(y; z).  
                                                

15 Each of these examples is used in practice: for example in Colombia and in the Brazilian  state of Minas 
Gerais. Naturally the translation from measure to policy response requires additional analysis, as deprivations 
are often interconnected.  
16 An unlimited decomposability property of this type has been studied by Chakravarty, Mukherjee, and Ranade 
(1998), who call it “factor decomposability.”  See also Chakravarty and Silber 2008, Chakravarty 2010. 
17 This property allows the functional form of the breakdown to vary for every set of distributions having a 
different set of the poor – a less stringent and more general assumption than a full dimensional decomposition 
that requires the same functional form across all the subsets.  



 12 

 

For example, in the case of the adjusted headcount ratio Mk0 = (ρk, M0), expression (2) yields 

its version of equation (3), namely  

M0 = [(w1/d) | g⋅1
0 (k) | (nw1)+…+(wd/d) | g⋅d

0 (k) | (nwd)] 

       = (w1/d) H1 +…+ (wd/d) Hd 

where the dimensional weight is vj = wj/d, or the value of deprivation j over the sum of the 

deprivation values, and the dimensional component is m.j(y.j; z) = Hj = g⋅ j
0 (k) /(nwj), where Hj 

is a censored headcount ratio or the percentage of the population that is both deprived in 

dimension j and poor. Notice that Hj depends on the distribution of the other dimensional 

achievements, since all are needed to determine whether a person is poor. However, the 

entries in column g⋅ j
0 (k)  can be expressed as 

€ 

gij
0(k) = gij

0 ρk(yi; z), and hence depend on the 

other dimensional achievement levels only through the identification function. This ensures 

that when we restrict consideration to distributions having the same fixed poverty status 

vector r, the term reduces to 

€ 

gij
0(k) = gij

0 ri and hence depends only on the achievements in 

dimension j, as required by dimensional breakdown.18
 

 

3.3 Dimensional Transfer. Transfer properties are motivated by the idea that poverty should 

be sensitive to the level of inequality among the poor, with greater inequality being 

associated with a higher (or at least no lower) level of poverty.19 But which notion of 

inequality should be used in the multidimensional context? As noted in the introduction, there 

are two concepts in common use, one due to Kolm (1977) and another due to Atkinson and 

Bourguignon (1982). The first is based on a definition of a progressive transfer as a “common 

smoothing”, whereby each dimensional distribution is transformed using the same 

bistochastic matrix. However, for this form of inequality to be meaningful, each dimensional 

variable would need to exhibit properties that are at odds with the ordinality axiom.20 

 

                                                
18 It can likewise be shown that every adjusted FGT methodology Mkα = (ρk,Mα) for α > 0, as presented in 
Alkire and Foster (2011), satisfies dimensional breakdown.  
19 See Sen (1976), Foster and Sen (1997), and Alkire et al (2014). 
20 The transformed achievement levels in a dimension are weighted averages of initial levels, and hence depend 
on the cardinal representation of variables, which goes against the ordinality axiom. In particular, after such a 
transformation, a person might be seen as poor under one cardinalization and nonpoor under a second. Measures 
applicable to ordinal variables cannot depend on the inequality level arising from a given cardinalization and, 
like M0, are independent of this form of inequality among the poor.  
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The second inequality concept is based on a specialized transfer called a rearrangement, in 

which two persons switch achievements in certain dimensions. The role of progressive 

transfer in this context is played by an association decreasing rearrangement, in which the 

achievement vectors of the two persons are initially ranked by vector dominance (so that one 

person has no less in each dimension than the other person and more in one) and then after 

the rearrangement their achievement vectors cannot be ranked (so that one person has more in 

one dimension and the other has more in a second dimension). This transformation can be 

interpreted as a progressive transfer in that it transforms an initial “spread” between two 

persons – a spread represented by the dominance between achievement vectors – into a 

moderated situation where neither person has unambiguously more than the other. The 

overall achievement levels in society are unchanged, but the correlation between them (and 

hence inequality) has been reduced.  

 

Since this form of transfer involves a permutation, and not an algebraic averaging, of two 

persons’ dimensional achievements it can be applied to ordinal data and is in principle 

consistent with property O for poverty measures. The associated axiom for multidimensional 

poverty measures typically requires the two persons involved in the rearrangement to be poor. 

For example, the weak rearrangement axiom, as defined in Alkire and Foster (2011), requires 

poverty not to rise as a result of an association decreasing rearrangement among the poor. 

Note that this axiom – like all related axioms in the literature – is weak in that it does not 

require poverty to strictly fall. It rejects the most problematic measures for which poverty can 

be “alleviated” by increasing inequality among the poor, but at the same time allows 

measures to be entirely insensitive to progressive rearrangements among the poor.21  

 

A natural question to ask is whether an alternative version of this transfer axiom can be 

formulated that would, in certain circumstances, require poverty to strictly fall in response to 

a decline in inequality among the poor. One minimalist approach is to restrict consideration 

to cases where the association decreasing rearrangement among the poor involves 

achievement levels that are on either side of deprivation cutoffs - thus affecting the 

distribution of deprivations as well. A dimensional rearrangement among the poor is an 

association decreasing rearrangement among the poor (in achievements) that is 

simultaneously an association decreasing rearrangement in deprivations. In other words, the 
                                                

21 Such is the case of the headcount ratio H and the adjusted headcount ratio Mo. 
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initial deprivation vectors (and achievement vectors) are ranked by vector dominance, while 

the final deprivation vectors (and achievement vectors) are not.22 The extra condition ensures 

that the person with lower level of achievements is actually deprived in some dimensions for 

which the other person is not, and that through the rearrangement one or more of these 

deprivations (but not all) are traded for non-deprived levels. The following transfer property 

for multidimensional poverty measures requires poverty to decrease when there is a 

dimensional rearrangement among the poor.  

 

Dimensional transfer (DT):  If y' is obtained from y by a dimensional rearrangement among 

the poor, then M(y';z) < M(y;z). 

 

This axiom does not apply to cases where the association decreasing rearrangement leaves 

deprivations unaffected; instead it requires the two persons to switch deprivations as well as 

achievements. Note that this axiom is analogous to the axiom of dimensional monotonicity 

found in Alkire and Foster (2011), which provides conditions under which a decrement in a 

dimensional achievement of a poor person must strictly raise the poverty level, namely, 

whenever the deprivation cutoff is crossed and the person becomes deprived in that 

dimension.  Poverty must strictly rise as a result of such a dimensional decrement among the 

poor - which alters the achievement vector of a poor person so that there is vector dominance 

(upwards) in deprivations as well as vector dominance (downwards) in achievements. 

 

A dimensional rearrangement among the poor does not affect the number of poor persons, 

and neither does a dimensional decrement among the poor. Consequently the headcount ratio 

Hk = (ρk,H) violates both dimensional transfer and dimensional monotonicity. In contrast, a 

dimensional increment among the poor decreases the average intensity of poverty A, and 

hence M0 = HA which ensures that the adjusted headcount ratio Mk0 = (ρk,M0)  satisfies 

dimensional monotonicity. But since a dimensional rearrangement among the poor leaves H 

and A unchanged, Mk0 just fails to satisfy the dimensional transfer axiom. The adjusted 

headcount ratio is insensitive to this form of inequality among the poor. The next section 

explores the possibility of constructing alternative measures that satisfy the dimensional 

transfer property. 

                                                
22 Note that the vector dominance in deprivations must be in the converse direction to the vector dominance in 
achievements. The person with lower achievements has additional deprivations.  
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4.  New Measures from Old  
 

The task at hand is to construct new methodologies that follow Mk0 in being able to be 

applied to ordinal data, but unlike Mk0 are sensitive to inequality among the poor. We 

maintain the dual cutoff approach to identification ρk, which is reasonably flexible and 

consistent with property O, and search for a multidimensional measure M whose 

methodology M = (ρk, M) satisfies properties O and DT. We begin by altering the adjusted 

headcount measure to obtain such a measure, and then expand the range of possibilities using 

a novel way of constructing multidimensional poverty measures from unidimensional poverty 

measures – a process that is of interest in its own right.  

 

Alkire and Foster (2011) applied a simple power transformation to the individual poverty 

function from their cardinal measures, Mα for α > 0, to obtain altered measures that would be 

sensitive to inequality across dimensions.23 When applied to M0, the same transformation 

yields a methodology that satisfies both O and DT. For any power γ > 0, let sγ(k) be the vector 

whose ith entry is ρk(yi;z)(si)γ, so that si
γ(k) is (si)γ when person i is poor and 0 when person i is 

not. For example, γ = 2 would produce s2(k), the censored vector of squared deprivation 

scores, while γ = 1 would yield the original censored vector of deprivation scores s1(k) = s(k). 

Now define M0
γ = µ(sγ(k)), and note that for γ = 1, the measure reduces to the usual adjusted 

headcount ratio, while for γ > 1 it places disproportionate emphasis on persons with the 

highest deprivation scores.24 We obtain the following result. 

 

Proposition 1  For every γ > 1, methodology M0
γ
 = (ρk, M0

γ) satisfies properties O and DT. 

 

Proof  Suppose that (y'; z') is obtained from (y; z) as an equivalent representation. It is clear 

that (y'; z') and (y; z) have the same deprivation matrix, and hence the same deprivation 

counts for all i, from which it follows that ρk(y'i; z') = ρk(yi; z). Hence the censored deprivation 

scores are the same, which implies that M0
γ(y'; z') = M0

γ(y; z) for every γ > 1. Thus, M0
γ 

satisfies property O.  

                                                
23 See Alkire and Foster (2011a) p. 485. 
24 In the case of union identification and equal valued deprivations, M0

γ corresponds to the measure of social 
exclusion proposed in Chakravarty and D’Ambrosio (2006) and used in Jayaraj and Subramanian (2010). As we 
note below, it also has obvious links to the FGT class of unidimensional measures. 
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Now suppose that y' is obtained from y by a dimensional rearrangement among the poor, 

where h is the better off poor person and i is the worse off, and j is the dimension in which h 

gives up a deprivation to i. We want to show that M0
γ(y'; z) < M0

γ(y; z), or equivalently 

µ(sγ(k)') < µ(sγ(k)). By definition, only columns h and i of the censored deprivation matrices 

are altered by the rearrangement, hence s(k)' and s(k) only differ in coordinates h and i. As 

M0(y'; z) = M0(y; z) it follows that µ(s(k)') = µ(s(k)) and so sh(k)' + si(k)' = sh(k) + si(k), which 

implies that there is a constant Δ such that sh(k)' = sh(k) + Δ and si(k)' = si(k) - Δ.  The 

rearrangement has person i shifting a deprivation in dimension j to person h, and hence Δ = wj 

/d > 0. Moreover, by the vector dominance of i’s deprivation vector over h’s deprivation 

vector, we know that sh(k) < si(k); and by the subsequent lack of vector dominance it follows 

that sh(k)' and si(k)' are both strictly between sh(k) and si(k). It therefore follows that s(k)' is 

obtained from s(k) by a progressive transfer (in this case of the deprivation score) from 

person i to person h and, since γ > 1, it must be true that µ(sγ(k)') < µ(sγ(k)) as we set out to 

show. Thus, M0
γ satisfies property DT.  ∎ 

 

The above proof shows how a dimensional rearrangement among the poor across two 

achievement matrices becomes a progressive transfer among the poor for the associated 

deprivation score vectors, which has the effect of lowering poverty when it is measured as the 

average of the deprivation scores to the power γ > 1. Note that a person’s deprivation score 

resembles the normalized poverty gap in the unidimensional world, so that M0
γ has a form 

analogous to an FGT index, where γ is the power on the normalized gaps. We can build upon 

this insight to show how other multidimensional poverty measures satisfying O and DT might 

be derived from unidimensional poverty measures. But before doing this, we pause to review 

the basic structure of unidimensional methods, along with some recent elaborations.  

 

A digression on unidimensional poverty measurement 

 

A unidimensional poverty measure is a real-valued mapping P: X × R+ → R from the set X of 

nonnegative income distributions of all population sizes and the set R+ of potential poverty 

lines. For any given income distribution x = (x1,x2,…,xn) in X and poverty standard π ≥ 0, the 

value P(x; π) is interpreted as the level of poverty in x given π. Common examples include 

the FGT class, the Watts measure, and the Sen measures; properties for unidimensional 
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poverty measures include invariance properties such as symmetry, replication invariance, 

scale invariance, and focus, dominance properties like monotonicity and transfer, and the 

subgroup properties of subgroup consistency and subgroup decomposability.25 For simplicity, 

we will focus on subgroup decomposable, and hence subgroup consistent, measures.  

 

In addition to specifying an aggregate measure, a poverty methodology must determine the 

precise criterion for identifying the poor. In the unidimensional environment, this usually 

begins with the selection of the poverty cutoff π designed to separate the persons targeted by 

the methodology and the remaining population. But as stressed by Donaldson and Weymark 

(1986), selecting the cutoff is not quite enough. The method must indicate whether the poor 

have incomes below the cutoff (the traditional “weak” definition that treats the cutoff as a 

minimum level) or incomes below or equal to the cutoff (the less traditional “strong” 

definition found in the literature following Sen (1976)).26 To convey which identification 

method is being used, we can specify an identification function ϕ: R+ × R+ → {0,1}, whose 

value ϕ(xi; π) indicates when person i with income xi is poor given poverty cutoff π. In 

particular, a value of ϕ(xi; π) = 1 indicates that i is poor, while a value of ϕ(xi; π) = 0 

indicates that i is nonpoor. The function ϕ has two possible forms: (i) the weak identification 

function, denoted by ϕw, and defined by ϕw(xi; π) = 1 for xi < π, and ϕw(xi; πI) = 0 for xi ≥ π; 

or (ii) the strong identification function, denoted by ϕs, and defined by ϕs(xi; π) = 1 for xi ≤ π, 

and ϕs(xi; πI) = 0 for xi > π. The strong identification function expands the set of the poor to 

include persons at the poverty line. 

 

With the help of this notation, the standard subgroup decomposable measures can be written 

as 

      P(x; π) = (1/n) Σi p(xi; π)ϕ(xi; π)        

where p: R+ × R+ → R  is a poverty value function that gauges a person’s poverty level when 

poor (but is ignored when the person is not poor) and ϕ is an identification function.27 For 

example, the headcount ratio can be written using the constant poverty value function p(xi; π) 
                                                

25 For definitions, see for example Foster and Sen (1997) or Foster et al (2013).  
26 See Donaldson and Weymark (1986). This distinction is relevant when the poverty measure has a 
discontinuity at the poverty line, such as exhibited by the headcount ratio. 
27 This is analogous to the decomposable form given in Atkinson (1987) and Shorrocks and Foster (1991), but 
with separate terms for aggregation and identification. This representation implies that P is the normalized 
version of the measure, so that P = 0 whenever no one is poor. Any subgroup decomposable measure can be so 
normalized by subtracting out the nonpoor “poverty level”. 
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= 1, while the remaining FGT measures can use p(xi; π) = ((π-xi)/π )α for α > 0. Notice that 

the choice of ϕw or ϕs has an impact on the measured level of poverty whenever p(π; π) > 0 

(as with the headcount ratio), while the choice has no impact whenever the measure has p(π; 

π) = 0 (as with the remaining FGT indices).  

 

The above representation emphasizes that there are two distinct roles for π in unidimensional 

poverty measurement: first as the poverty cutoff that is used in the identification of the poor 

via ϕ; second as the poverty standard used in the valuation of their poverty via p. The 

traditional approach does not differentiate between the two and instead uses the same value in 

both roles. Recent work has highlighted instances where it may be very useful to distinguish 

between the two, with πI denoting the poverty cutoff from identification, πA denoting the 

poverty standard from aggregation, and πI ≤ πA reflecting the practical requirement that 

anyone identified as being poor should not have an income level beyond the poverty standard 

used in aggregation.28 For example, when evaluating the extent of ultra-poverty a lower 

poverty cutoff πI must be used to identify this group of most deprived poor. However, it does 

not follow that the poverty standard πA used in gauging the intensity of aggregate poverty 

must also be lowered - a change that would make their poverty seem less intense. With πI < 

πA, an ultra-poor poverty cutoff could be used without compromising the prevailing poverty 

standard. Following Foster and Smith (2014) we differentiate between πI and πA to obtain 

greater flexibility in targeting and measurement. In symbols, a unidimensional poverty 

methodology is denoted by P = (ϕ, P), where ϕ(xi; πI) is the identification function using the 

poverty cutoff πI for identification and  

     P(x; πA) = (1/n) Σi p(xi; πA)ϕ(xi; πI)      (4) 

is the poverty measure using the poverty standard πA ≥ πI for aggregation.29 

 

The standard properties for unidimensional poverty measures apply directly to the broader 

context considered here (where the poverty standard may differ from the poverty cutoff), so 

long as it is remembered that the relevant set of the poor (or nonpoor) is determined by ϕ 

evaluated at πI and not πA. These properties include the invariance properties of symmetry, 
                                                

28 See Foster and Smith (2013). 
29 The approach is generalized to non-decomposable measures in Foster and Smith (2013). However, for 
simplicity of presentation, and because of the general importance of subgroup decomposability in practical 
application, we restrict consideration to decomposable measures here. 
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replication invariance, and focus, and the subgroup properties of subgroup consistency and 

subgroup decomposability. For the purposes of this paper we will call these three invariance 

properties and two subgroup properties the basic unidimensional properties, and focus on 

methodologies satisfying them.30  

 

Two additional dominance properties will now be defined, which make use of the following 

forms of basic distributional changes. We say that x' is obtained from x by a decrement 

among the poor if there is a person i with ϕ(xi; πI) = 1 such that xi' < xi, while for all h ≠ i we 

have xh' = xh. In words, such a decrement involves a poor person losing income while all 

other incomes are unchanged. We say that x' is obtained from x by a progressive transfer 

among the poor if there are two persons h, i with ϕ(xh; πI) = ϕ(xi; πI) = 1 such that xh' – xh = xi 

– xi' = Δ > 0 where xi – xj > Δ, while for all other i' we have xi'' < xi'. In words, such a transfer 

involves a richer poor person giving income to an even poorer person, but not so much that 

they switch incomes.  

 

Monotonicity:  If x' is obtained from x by an decrement among the poor, then  

P(x'; πA) > P(x; πA) 

Transfer:  If x' is obtained from x by a progressive transfer among the poor, then 

P(x'; πA) < P(x; πA) 

 

The properties specify that the poverty methodology must register an increase in poverty 

when there is a decrement among the poor, and a decrease in poverty when there is a 

progressive transfer among the poor.  

 

From unidimensional to multidimensional 

 

Now that we have reviewed the structure of unidimensional poverty measurement, we return 

once again to the multidimensional environment where a useful way of obtaining 

multidimensional poverty methodologies from unidimensional methodologies can now be 

described. The process begins by defining a matrix that is complementary to the deprivation 

matrix g0 as it indicates when persons are not deprived. The attainment matrix, denoted by a0, 
                                                

30 Of course, all unidimensional methodologies considered here have the form (4) and hence satisfy subgroup 
decomposability and subgroup consistency by construction.  
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is the matrix having the typical element aij
0 = wj - gij

0 for i = 1,…, n and j = 1,…, d. In other 

words, aij
0 = wj whenever i is not deprived in j, and aij

0 = 0 whenever i is deprived in j. The 

attainment count vector, denoted by a, is the vector defined by ai = ai1
0 +…+ aid

0 for each i = 

1,…,n. In other words, it gives an aggregate value of attainment for each person. Attainment 

counts can range between 0 and d, and together with deprivation counts they sum to d (so that 

ai + ci = d for all i).  

 

Now let P = (ϕ, P) be a unidimensional poverty methodology with poverty cutoff πI and 

poverty standard πA satisfying 0 ≤ πI ≤ πA ≤ d. Define the associated multidimensional 

poverty methodology M
P
 = (ρϕ, MP) by ρϕ(yi; z) = ϕ(ai; πI) and MP(y; z) = P(a; πA) where a is 

the attainment count vector associated with y given z. In other words, M
P
 applies the 

unidimensional methodology P to the attainment count distribution. In particular, M
P
 

identifies person i as being poor in y if ϕ(ai; πI) = 1; and it measures poverty in y as the 

unidimensional poverty level P(a; πA) in a, given the poverty standard πA. The resulting 

multidimensional poverty methodology M
P
 will be called an attainment count methodology 

while the associated process of applying P to obtain M
P
 will be called the attainment count 

transformation.  

 

It is easy to see that the attainment count methodology uses a dual cutoff identification from 

Alkire and Foster (2011), where the poverty cutoff is given by k = d - πI. For example if ϕ = 

ϕs is being used in P, then since ρϕ(yi; z) = ϕs(ai; πI), it follows that person i is poor whenever 

ai ≤ πI, hence d - ci ≤ d - k or ci ≥ k as required by the standard dual cutoff identification 

function ρk. On the other hand, if P uses ϕ = ϕw, then the identification function ρϕ yields an 

alternative dual cutoff form ρk' where once again k = d - πI, but a person is considered poor if 

ci > k.31 To see how the aggregation in M
P
 is derived from P, we provide several basic 

examples.  

 

Example 1:  Headcount Ratio Suppose that ϕ = ϕs and P = P0, where P0 is the unidimensional 

headcount ratio. Fix πA = d and pick any πI satisfying 0 ≤ πI < d. Then M
P
 = (ρk, H) where ρk 

is the dual cutoff identification function given poverty cutoff k = d - πI, and H(y; z) = (1/n) Σi 
                                                

31 Both versions of the dual cutoff approach are considered by Alkire and Foster (2011) although they focus on 
the version based on the inequality ci ≥ k.  
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ρk(y; z) is the usual multidimensional headcount ratio. The case πI = 0 (and hence k = d) 

corresponds an intersection identification, since being poor means being deprived in all 

dimensions at once and having no attainments at all. Likewise, πI close to d (and hence k 

close to 0) yields the union identification, in which the poor have at least a single deprivation 

and an attainment count below d.32 Notice that since P is the headcount ratio, the poverty 

standard πA is superfluous here.  

 

Example 2:  Adjusted Headcount Ratio Suppose that ϕ = ϕs and P = P1, where P1 is the 

unidimensional poverty gap measure. Fix πA = d and pick any πI satisfying 0 ≤ πI < d. Then 

M
P
 = (ρk, M0) where the identification function is ρk with k = d - πI while M0 is the adjusted 

headcount ratio of Alkire and Foster (2011). To see this, note that when the poor are 

identified using ϕs(ai; πI) and measured using P1(a; πA), then the overall poverty level is 

found by averaging the terms ϕs(ai; πI)(πA – ai)/πA across all i = 1,…,n. But for every poor 

person i (with ai ≤ πI, and hence ci ≥ k) this term reduces to ci/d = ci(k)/d, while for all 

nonpoor i (with ai > πI, and hence ci < k) it is 0 = ci(k)/d. The average of ci(k)/d across all i is 

the same as the average across all entries in the censored deprivation matrix g0(k) and hence 

the poverty measure is just the adjusted headcount ratio M0 = µ(g0(k)).33 

 

Example 3:  An Alternative Headcount Ratio Suppose that ϕ = ϕw and P = P0 is the 

unidimensional headcount ratio. Pick any π = satisfying 0 < π ≤ d and set πI = πA = π. Then 

M
P
 = (ρk', H) where H is the usual multidimensional headcount ratio and ρk' is the alternative 

dual cutoff identification function given poverty cutoff k = d - π. Here the case π = d (and 

hence k = 0) corresponds to union identification, since i is poor whenever ci > 0 signifying at 

least one deprivation. Likewise, π close enough to 0 (and hence k close enough to d) yields 

the intersection identification, in which the poor must be deprived in all dimensions and have 

no attainments at all.34 Nothing would change if πA were strictly larger than if πA = π, since P 

is the headcount ratio and does not utilize the poverty standard. Real world examples of (ρk', 

                                                
32 More precisely, union identification is obtained when πI = d – wmin or above, so that k = wmin or below, where 
wmin is the lowest deprivation value.  
33 This is the form used in the UNDP’s Multidimensional Poverty Index (MPI) and in Colombia’s official 
multidimensional poverty measure. See also Alkire and Santos (2010). 
34 More precisely, intersection identification is obtained when π = wmin or below, so that k = d - wmin or above, 
where wmin is once again the lowest deprivation value.  
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H) include the multidimensional headcount ratio reported as part of Mexico’s official poverty 

methods.35 

 

Example 4:  An Alternative Adjusted Headcount Ratio Suppose that ϕ = ϕw and pick πI = πA 

= π where 0 < π ≤ d, so that P = P1 is the traditional unidimensional poverty gap. Then M
P
 = 

(ρk', M0'), where the identification function is ρk' with k = d - π and the measure is M0'(y;z) = 

(1/n)Σi (ci'/d') ρk'(yi; z), where ci' = ci - k is the deprivation count above the poverty cutoff for 

person i, and d' is the maximum possible deprivation count above the poverty cutoff. In 

words, M0'(y; z) is an alternative adjusted headcount ratio that measures a poor person’s 

intensity of deprivation using the net deprivation share ci'/d'. To see this, note that P1(a; π) = 

(1/n) Σi ϕw(ai; π)(π – ai)/π where (π – ai)/π = (d-k-ai)/(d-k) = (ci-k)/(d-k) = ci'/d' and ϕw(ai; π) 

= ρk'(yi; z), so that clearly P1(a; π) = M0'(y; z). In the Mexican example, the deprivation values 

w1 = 7/2 and wj = 7/12 for j = 2,…,7 and the poverty cutoff k = 7/2 along with the 

identification condition ci > k ensures that all poor persons are deprived in the first 

dimension, which is income, and at least one additional non-income dimension. The intensity 

of a poor person’s deprivation is measured by the share of all possible non-income 

deprivations a person has, while a nonpoor person has zero intensity. Averaging across all 

persons yields the alternative version of the adjusted headcount ratio M0'.   

 

The above examples show that several key multidimensional methodologies used in practice 

are in fact attainment count methodologies, including the headcount and adjusted headcount 

methodology from Alkire and Foster (2011), employed in the MPI and Colombia’s official 

measure, and the alternative headcount and adjusted headcount methodologies that underlie 

Mexico’s official measure. Note that while all of these examples satisfy ordinality, none 

satisfies the dimensional transfer property. Our goal in reviewing unidimensional 

measurement and constructing attainment count methodologies was to obtain measures 

satisfying conditions O and DT. The following result demonstrates just how easy this is.  

 

                                                
35 The Mexican technology has seven dimensions with effective deprivation values of w1 = 7/2 and wj = 7/12 for 
j = 2,…,7 and a poverty cutoff of k = 7/2. See CONEVAL (2009).  
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Proposition 2 Let P be a unidimensional poverty methodology (4) that satisfies the five basic 

unidimensional properties. Then the attainment count methodology M
P
 satisfies the nine 

basic multidimensional properties. Moreover: 

(i) M
P
 satisfies dimensional monotonicity whenever P satisfies monotonicity  

(ii) M
P
 satisfies the dimensional transfer property whenever P satisfies the transfer 

property. 

 

Proof: Let y and y' denote two distributions and let a and a' denote their respective attainment 

vectors, so that where P is the poverty measure from P and MP is the measure from the 

attainment count methodology M
P
 defined using P, we have MP(y; z) = P(a; πA) and MP(y'; z) 

= P(a'; πA). Given that P satisfies the basic properties for unidimensional poverty 

methodologies, namely, symmetry, replication invariance, and the focus axiom, it is an easy 

matter to show that M
P
 likewise satisfies the basic properties for multidimensional poverty 

methodologies, namely symmetry, replication invariance, and the poverty focus axiom. For if 

y' is obtained from y by a permutation, then given the definition of the attainment count 

vector, a' must be obtained from a by a permutation, so that by symmetry of P it follows that 

P(a'; πA) = P(a; πA). By definition, then, MP(y'; z) = MP(y; z), which shows that M
P
 satisfies 

symmetry. An entirely analogous argument establishes that M
P
 satisfies replication 

invariance. For poverty focus, suppose that y' is obtained from y by a simple increment 

among the nonpoor. This means that there is a single entry yij such that: the remaining entries 

in y' and y are the same; y'ij > yij; and person i is nonpoor in y. The latter condition translates 

to ρϕ(yi; z) = 0 and hence ϕ(ai; πI) = 0, while the previous two ensure that a'i ≥ ai. By the focus 

axiom for P, it follows that P(a'; πA) = P(a; πA) and so by definition MP(y'; z) = MP(y; z). 

Hence M
P
 satisfies the poverty focus axiom.  

Now to show (i), if y' is obtained from y by a dimensional decrement among the poor, there is 

a single entry ai such that: the remaining entries in a' and a are the same; a'i < ai; and i is poor 

in y according to M
P
, and hence in a according to P. (To be finished) 

 
5. Possibilities 
 

The previous section provided two ways of constructing intuitive multidimensional poverty 

indices satisfying dimensional transfer – a first approach used in Alkire and Foster (2011a) 

and other counting papers, which raises to a power an individual’s poverty function before 
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averaging across people; and a second approach, that converts everything into attainments  –

that are zero if the achievement level is below the deprivation cutoff and one if it is equal or 

above – constructs a distribution of attainment counts and applies a unidimensional poverty 

measure that satisfies the transfer property. However, we also note that although each of the 

examples we constructed to satisfy the dimensional transfer property, not one satisfies 

dimensional breakdown. Our next theorem offers insight as to why this is true.  

 

Proposition 3: Then there is no multidimensional poverty methodology M = (ρ, M) satisfying 

symmetry, dimensional breakdown and dimensional transfer.  

 

Proof: The assumption ensures that a switch among the poor can be constructed. 

Consequently, let distribution y" be obtained from y' by a nontrivial progressive transfer or  

switch among the poor. By symmetry, without loss of generality we can let person 1 be the 

giver of the transfer and person 2 be the receiver. Let j' denote the dimension in which the 

switch takes place. In y", replace y"1j with y"2j for all 𝑗 ≠ 𝑗′ to obtain achievement matrix x".  

Similarly in y', replace y'1j with y'2j for all 𝑗 ≠ 𝑗′ to obtain achievement matrix x'. Clearly both 

y" and y' have the same poverty status vector r, and since y'1 ≥ y'2 while ρ is monotonic, so do 

x" and x'. By dimensional breakdown, there exist weights vj > 0 summing to 1 and functions 

m.j: Yrj ×
dR ++ → R for j = 1,…, d, such that (3) holds for all y in Yr, including y', y", x' and x". 

Applying (3) to y" and y' yields M(y';z) – M(y";z) = vj' (mj' (y'.j'; zj') - mj' (y".j'; zj')) while 

applying (3) to x" and x' yields M(x';z) – M(x";z) = vj' (mj' (x'.j'; zj') - mj' (x".j'; zj')). But notice 

that by construction y'.j' = x'.j' and y".j' = x".j'  and so M(y';z) – M(y";z) = M(x';z) – M(x";z). 

Finally, notice that x' is simply a permutation of x" (between persons 1 and 2) and so M(x';z) 

– M(x";z) = 0. This implies that M(y';z) = M(y";z) and hence dimensional transfer is violated.  

 

Given that it is necessary to choose between measures that satisfy dimensional transfer, and 

those which can be broken down by dimension, and given that both properties are arguably 

important, how are empirical and operational studies to proceed? The first option is to 

employ the class of measures that respect dimensional breakdown, and to supplement these 

with associated inequality measures including poverty measures that satisfy dimensional 

transfer. The second is to supplement measures that incorporate inequality among the poor, 

with dimensional analyses that draw on the original (censored) deprivation or attainment  

matrix.   
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Whilst both should be explored, we favour the first route in applied work for several reasons. 

Dimensional breakdown enriches the informational content of poverty measures, enabling 

them to be used to tailor policies to the composition of poverty, to monitor changes by 

dimension, and to compare across time and space. Poverty reduction in measures respecting 

dimensional breakdown can be accounted for in terms of changes in deprivations among the 

poor, and analysed by region and dimension. This creates positive feedback loops that reward 

effective policies. The distribution sensitive measures also enrich the information in 

important ways: they illuminate the patterns of between-group and within-group inequality 

among the poor. But it may be possible to shed light on inequality in other ways. This section 

sketches out some options for doing so. Which methodology is followed depends upon the 

purpose of the exercise and the pertinent questions for analysis.  

 

A basic but by no means un-illuminating option is to describe subsets of poor people having 

mutually exclusive and collectively exhaustive graded bands of deprivation scores. Thus 

when the poverty cutoff is one-third, as it is for the global MPI (Alkire and Santos 2010), it 

may be revealing to show which percentage of the poor have deprivation scores whose values 

fall in the band of 33-39% of deprivations, 40-49%, and so on to 100%. The percentage of 

people who experience different gradients of poverty across regions and time can be 

compared to see whether inequality is diminishing or advancing.36 The comparisons can be 

enriched by applying dimensional breakdown to the subgroup experiencing each intensity 

band, and examining the dimensional composition of poverty experienced by those having 

different ranges of deprivation scores. And stochastic dominance can be explored.  

 

A second option is to report two poverty measures for a given definition of poverty and 

dataset, one respecting DB and the other, DT. For example, one could report M0 and M0'  - 

that is, the AF adjusted headcount ratio and the associated Squared Breadth measure. 

Differences in ordinal rankings between the measures expose different structures of 

inequality among the poor.  Recall that the inequality measure associated with the FGT class 

of measures when alpha = 2 is the squared coefficient of variation, which is decomposable by 

population subgroups. The squared coefficient of variation is the average squared difference 
                                                

36 For empirical examples see Alkire Roche Seth and Sumner 2013, who compare countries across four 
gradients of poverty, and Alkire and Seth 2013, who show transitions across population subgroups of subgroup 
members experiencing different intensity bands of poverty.  
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between each poor people’s income and the mean incomes of the poor, as a share of squared 

mean incomes among the poor. In a multidimensional setting, the squared coefficient of 

variation represents inequality across the deprivation (or attainment) scores of the poor. 

When the headcount ratio and the income poverty gap are held constant, then the FGT-2 

measure and hence the M0' measure varies with the squared coefficient of variation among 

the poor.  

 

But if the companion measure to M0 is used mainly to supplement M0 with information on 

inequality among the poor, why should M0' be used rather than another distribution sensitive 

measure – or indeed a direct measure of inequality? Why is the squared coefficient of 

variation – a relative measure – more appropriate than the two Theil indices, the Atkinson 

index or some other form? The selection of an inequality measure will depend upon the 

purpose of the exercise.  

 

To give an example of a situation in which different inequality measure could be helpful, in 

joint work (Seth and Alkire 2013), one of us argues that inequality measures using 

deprivations can and perhaps should usefully be constructed to reflect absolute inequality, 

because this facilitates comparisons and also is coherent with a view that each deprivation is 

of intrinsic importance. Furthermore, the measure should be decomposable and should reflect 

both between and within group inequality levels.  We select an inequality measure that could 

be called variance, because it uniquely satisfies a set of principles that are particularly 

important for policy, including subgroup consistency and decomposability within and 

between groups.   In the case of variance, “its decomposable property allows the overall 

inequality to be decomposed into a total within-group and a between-group component…. 

Also, inequality remains same whether the poor are assessed in a deprivation space or in an 

attainment space.”  The inequality measure takes the form: 

 

𝐼 𝑦 =
𝛽
𝑛 [𝑠!(𝑘)− 𝜇 𝑠!(𝑘) ]!

!

!!!

 

In other words, the variance inequality measure is based on the censored vector of weighted 

deprivation scores, and reflects the average squared difference between person i's deprivation 

score and the mean deprivation score across the population, multiplied by some constant beta, 

which normalizes the inequality measure to lie between 0 and 1.  
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It is actually elementary to make other indices reflecting inequality among the 

multidimensionally poor. Above, we presented our measures with respect to an attainment 

vector a and associated poverty cutoff π. We showed how all well-known unidimensional 

measures could be applied to ordinal data that had been prepared using simple 

dichotomization, and that the interpretation of the entries in the attainment vector change 

from being the ‘amount’ of income to reflecting the ‘breadth’ of attainments across 

dimensions that people enjoy. In a parallel fashion, we now point out that it is elementary to 

generate any one of a set of possible measures of inequality among the poor, I(a;π), using the 

attainment vector a censored by the associated poverty cutoff π.  Recall that the attainment 

scores have some salience for multidimensional poverty, and potentially describe the variable 

attainments that people have in terms of breadth. Admittedly the attainment scores are crude, 

as they sum dichotomised variables, and the dichotomization omits any information on the 

levels of achievement or deprivation experienced. However this treatment respects the ordinal 

character of many categorical or nominal variables, and may be informative, particularly if 

the emphasis is inequality among the poor.  

 

Using the distribution of (censored) attainment scores across the poor, we can create an 

inequality measure I(a;π), much in the same way that traditional inequality measures such as 

Atkinson, Theil, or Gini are constructed.  While it is clear that measures of inequality among 

the poor could draw upon the vector of censored attainment scores, it is also possible to 

construct legible measures of inequality that draw upon the distribution of deprivation scores, 

and indeed to use uncensored as well as censored versions of the score vectors. Measures 

constructed with these distributions will offer a window onto a certain type of 

multidimensional inequality – one that is oriented to the breadth of attainments people 

experience. This approach is quite different from other constructions of multidimensional 

inequality, but may be useful, particularly when data are ordinal.   

 

7. Conclusion 

We began by identifying three properties of the adjusted headcount ratio of Alkire and Foster 

(2011) that have made the poverty measure so useful in practice: subgroup decomposability, 

dimensional breakdown, and ordinality. We also discussed the two most common distribution 

sensitivity properties found in the literature, which require poverty not to fall in response to 
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an increase in inequality among the poor, and noted that both are also satisfied by the 

adjusted headcount ratio. We explored alternatives to these weak forms of axioms and, given 

ordinality, settled upon an intuitive dimensional transfer property that requires poverty to rise 

in response to an inequality-increasing switch among the poor. Following a suggestion in 

Alkire and Foster (2011) we constructed a class of measures that satisfies this requirement 

that builds upon the adjusted headcount ratio and is related to the FGT indices. We devised a 

natural transformation from unidimensional to multidimensional poverty measures by 

converting a multidimensional distribution matrix into a single dimensional attainment count 

distribution and applied a unidimensional poverty measure. It was shown that if the 

unidimensional poverty measure satisfies the traditional monotonicity and transfer properties 

then the multidimensional poverty measure satisfies the dimensional monotonicity and 

dimensional transfer properties. The implication is that it is a straightforward exercise to 

construct examples of multidimensional measures that strictly reflect distributional 

considerations through the dimensional transfer axiom.  

 

Each of these example measures, however, was found to violate dimensional breakdown, 

which then led us to prove an impossibility result identifying a fundamental conflict between 

the dimensional transfer and dimensional breakdown properties. We noted that there are 

many forms of inequality that are of interest to the poverty analyst, and that the form 

embodied in these distributional sensitivity properties is but one possibility. We showed how 

alternative analyses of inequality can be introduced while using a measure that satisfies the 

core property of dimensional breakdown. We illustrated these methods with an example the 

example of the Multidimensional Poverty Index (MPI) applied to Niger and broken down by 

region and by dimension. We also calculated several new multidimensional poverty measures 

obtained using the above transformation and analyze poverty by region, but not by 

dimension.  

 

Several findings of this paper might be fruitfully developed in further research. The 

properties of new and existing multidimensional poverty measures clarified in terms of 

ordinality, dimensional breakdown, and dimensional transfer. The attainment count 

methodology could be used to generate and apply a large set of new multidimensional 

poverty measures. Further, the properties of these new measures, using the attainment count 

transformation, could be transparently discerned. Our distinction between the poverty cutoff 
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used to identify the poor and the poverty standard used to aggregate information about the 

poor could be usefully applied to policy problems such as targeting. 

 

By probing and clarifying the properties of the Adjusted Headcount Ratio, we conclude that 

that methodology continues to provide a neutral and policy-relevant foundation for empirical 

work. The policy value of being able to see the dimensional composition of poverty, to 

compare it across groups and analyse its change over time has been established. Analyses of 

inequality within and across subgroups of the poor can and should supplement this analysis, 

not replace it.  
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