Public and Private Expenditures on Human Capital Accumulation in India

Chetan Ghate¹ Gerhard Glomm² John T. Stone III³

Conference on Inequality-Measurement, trends, impacts, and policies, UNU-WIDER

5-6 September, 2014

¹Indian Statistical Institute, Delhi Centre
 ²Indiana University, Bloomington
 ³Weber State University

- Human capital is often referred to as the "engine of growth" (Lucas, 1988)
- Public education funding determines human capital accumulation, therefore exploring this nexus is crucial (see Glomm and Ravikumar (1998), Kaganovich and Zilcha (1999), and Blankenau and Simpson (2004)).

• How does public education spending influence income distribution?

- Public education is one of the "greatest equalizers of the condition of men" (Horace Mann)
- See Loury (1981), Durlauf (1996), Fernandes and Rogerson (1998), and Glomm and Kaganovich (2003))

- Human capital is often referred to as the "engine of growth" (Lucas, 1988)
- Public education funding determines human capital accumulation, therefore exploring this nexus is crucial (see Glomm and Ravikumar (1998), Kaganovich and Zilcha (1999), and Blankenau and Simpson (2004)).

• How does public education spending influence income distribution?

- Public education is one of the "greatest equalizers of the condition of men" (Horace Mann)
- See Loury (1981), Durlauf (1996), Fernandes and Rogerson (1998), and Glomm and Kaganovich (2003))

- Human capital is often referred to as the "engine of growth" (Lucas, 1988)
- Public education funding determines human capital accumulation, therefore exploring this nexus is crucial (see Glomm and Ravikumar (1998), Kaganovich and Zilcha (1999), and Blankenau and Simpson (2004)).
- How does public education spending influence income distribution?
 - Public education is one of the "greatest equalizers of the condition of men" (Horace Mann)
 - See Loury (1981), Durlauf (1996), Fernandes and Rogerson (1998), and Glomm and Kaganovich (2003))

- Human capital is often referred to as the "engine of growth" (Lucas, 1988)
- Public education funding determines human capital accumulation, therefore exploring this nexus is crucial (see Glomm and Ravikumar (1998), Kaganovich and Zilcha (1999), and Blankenau and Simpson (2004)).
- How does public education spending influence income distribution?
 - Public education is one of the "greatest equalizers of the condition of men" (Horace Mann)
 - See Loury (1981), Durlauf (1996), Fernandes and Rogerson (1998), and Glomm and Kaganovich (2003))

• The early literature relies on simplifying assumptions

- Bénabou (1996), in addition to parental human capital and time, considers public education in the production of future human capital
- Lucas (1988) considers only a private input in human capital accumulation
- All inputs in Glomm and Ravikumar (1998), Kaganovich and Zilcha (1999), and Blankenau and Simpson (2004) have unitary elasticity
- Glomm and Kaganovich (2003) consider elasticity of public and private investment in human capital as perfect substitutes

• The early literature relies on simplifying assumptions

- Bénabou (1996), in addition to parental human capital and time, considers public education in the production of future human capital
- Lucas (1988) considers only a private input in human capital accumulation
- All inputs in Glomm and Ravikumar (1998), Kaganovich and Zilcha (1999), and Blankenau and Simpson (2004) have unitary elasticity
- Glomm and Kaganovich (2003) consider elasticity of public and private investment in human capital as perfect substitutes

- The early literature relies on simplifying assumptions
 - Bénabou (1996), in addition to parental human capital and time, considers public education in the production of future human capital
 - Lucas (1988) considers only a private input in human capital accumulation
 - All inputs in Glomm and Ravikumar (1998), Kaganovich and Zilcha (1999), and Blankenau and Simpson (2004) have unitary elasticity
 - Glomm and Kaganovich (2003) consider elasticity of public and private investment in human capital as perfect substitutes

- The early literature relies on simplifying assumptions
 - Bénabou (1996), in addition to parental human capital and time, considers public education in the production of future human capital
 - Lucas (1988) considers only a private input in human capital accumulation
 - All inputs in Glomm and Ravikumar (1998), Kaganovich and Zilcha (1999), and Blankenau and Simpson (2004) have unitary elasticity
 - Glomm and Kaganovich (2003) consider elasticity of public and private investment in human capital as perfect substitutes

Our paper

- Our paper builds on the above literature in three main respects.
 - We allow for imperfect substitutability of public and private education in a child's human capital accumulation (see Tooley and Dixon (2007) and Glomm and Kaganovich (2003, 2008))
 - We allow for complementarity between child's ability and parental human capital in human capital accumulation (this is operative only if parental human capital exceeds a minimum exogenous threshold to intellectually contribute to the child's learning (see Cunha et al. (2010)))
 - We also allow for non-homothetic preferences
- We also assume that public education spending by the state is financed by a variety of taxes (income tax, a tax on consumption, and a centre-state transfer)
- We then calibrate the model to a representative state (the state with the median level of public education expenditures/NSDP in 1985) in India

< □ > < ---->

Our paper

- Our paper builds on the above literature in three main respects.
 - We allow for imperfect substitutability of public and private education in a child's human capital accumulation (see Tooley and Dixon (2007) and Glomm and Kaganovich (2003, 2008))
 - We allow for complementarity between child's ability and parental human capital in human capital accumulation (this is operative only if parental human capital exceeds a minimum exogenous threshold to intellectually contribute to the child's learning (see Cunha et al. (2010)))

We also allow for non-homothetic preferences

- We also assume that public education spending by the state is financed by a variety of taxes (income tax, a tax on consumption, and a centre-state transfer)
- We then calibrate the model to a representative state (the state with the median level of public education expenditures/NSDP in 1985) in India

Our paper

- Our paper builds on the above literature in three main respects.
 - We allow for imperfect substitutability of public and private education in a child's human capital accumulation (see Tooley and Dixon (2007) and Glomm and Kaganovich (2003, 2008))
 - We allow for complementarity between child's ability and parental human capital in human capital accumulation (this is operative only if parental human capital exceeds a minimum exogenous threshold to intellectually contribute to the child's learning (see Cunha et al. (2010)))
 - We also allow for non-homothetic preferences
- We also assume that public education spending by the state is financed by a variety of taxes (income tax, a tax on consumption, and a centre-state transfer)
- We then calibrate the model to a representative state (the state with the median level of public education expenditures/NSDP in 1985) in India

- Economic growth is higher due to higher public education spending.
- However, how higher public education is financed has a bearing on the growth-inequality trade-off
 - If higher public education is financed by a higher consumption tax or a centre-state federal transfer instead of a higher labor income tax, this causes growth to go up by more but inequality to go down by less
 - If higher public education is financed by a higher labor income tax keeping consumption tax and centre-state federal transfer fixed – this causes growth to go up by less and inequality to go down by more
- Therefore, there is a growth-inequality trade-off
- Computationally, we show that relatively large changes in funding levels in education have relatively minor impacts on growth of aggregate human capital, and the evolution of income inequality.

(日) (同) (三) (三)

- Economic growth is higher due to higher public education spending.
- However, how higher public education is financed has a bearing on the growth-inequality trade-off
 - If higher public education is financed by a higher consumption tax or a centre-state federal transfer instead of a higher labor income tax, this causes growth to go up by more but inequality to go down by less
 - If higher public education is financed by a higher labor income tax keeping consumption tax and centre-state federal transfer fixed this causes growth to go up by less and inequality to go down by more
- Therefore, there is a growth-inequality trade-off
- Computationally, we show that relatively large changes in funding levels in education have relatively minor impacts on growth of aggregate human capital, and the evolution of income inequality.

Description of the Model

- The economy consists of *n* OLG families who live for two periods
- Effectively, parents have one decision to derive utility out of out of consumption (c_t > <u>c</u>) and out of child's human capital accumulation (h_{t+1}) such that

$$u(c_t, h_{t+1}) = \phi \ln (c_t - \underline{c}) + \ln (h_{t+1})$$

where,

$$h_{t+1} = \begin{cases} B\left(E_t^{\rho} + \theta e_t^{\rho}\right)^{\frac{\alpha}{\rho}} (a_t h_t)^{\delta}, \ h_t \ge \overline{h}_t \\ B\left(E_t^{\rho} + \theta e_t^{\rho}\right)^{\frac{\alpha}{\rho}} (a_t)^{\delta}, \ h_t < \overline{h}_t \end{cases}$$
(1)

and,

$$(1 + \tau_c) c_t + e_t = (1 - \tau_L) w_t h_t.$$
(2)

- E_t is (per-capita) public spending on education, e_t is private spending on education, a_t is the child's ability, h_t is the parent's stock of human capital.
- Note $\rho \in (0,1)$: If $0 < \rho < 1$, these two inputs are substitutes.
- In the calibration, we will let $\overline{h}_t = F_{ht}^{-1}(\psi)$.

GBC: State and the Federal Government

• The state government faces the following GBC

$$n_t E_t = \tau_c C_t + T_t.$$
$$E_t = \frac{\tau_c C_t + T_t}{n_t}$$

where C_t is the state's aggregate consumption, and T_t is the centre-state transfer.

• The following is the federal government's budget constraint

$$T_t = \Delta \tau_L w_t H_t.$$

where Δ , τ_L , and τ_c are exogenous.

• Note that the state is a net receiver of federal funds if

$$\Delta > 1$$

and a net contributor if

 $\Delta < 1$

Solving the model

• The household solves the following

$$\max_{c_t,e_t} u\left(c_t, h_{t+1}\right) = \phi \ln\left(c_t - \underline{c}\right) + \ln\left(h_{t+1}\right)$$

subject to (1) and (2)

• From (2)

$$c_t - \underline{c} = rac{\overline{e}_t - e_t}{1 + \tau_c}$$

where \overline{e}_t is the maximum private expenditure possible for the household on e_t such that

$$\overline{e}_t = (1 - \tau_L) w_t h_t - (1 + \tau_c) \underline{c}.$$
(3)

• The FOC $\{e_t\}$ yields an interior solution e_t^* such that,

$$(\phi + \alpha) \theta (e_t^*)^{\rho} = \alpha \theta \overline{e}_t (e_t^*)^{\rho - 1} - \phi E_t^{\rho}, \qquad (4)$$

- From (4) and (3), two conditions emerge for $e_t^* > 0$.
 - First, from $\overline{e}_t \ge 0$, there exists a cutoff level of h_t below which $e_t = 0$

$$h_t \ge \underbrace{\frac{(1+\tau_c)\,\underline{c}}{(1-\tau_L)w_t}}_{\text{Subsistence Threshold}} = \widehat{h}_t \tag{5}$$

- Second since E_t and e_t are imperfect substitutes, E_t and therefore the tax instruments $\{\tau_c, \tau_L\}$ cannot be too high.
- Comparative statics: From (4) $\frac{\partial e_t^*}{\partial E_t} < 0$, $\frac{\partial e_t^*}{\partial h_t} > 0$, $\frac{\partial e_t^*}{\partial \tau_L} < 0$, and $\frac{\partial e_t^*}{\partial \tau_c} < 0$

- From (4) and (3), two conditions emerge for $e_t^* > 0$.
 - First, from $\overline{e}_t \ge 0$, there exists a cutoff level of h_t below which $e_t = 0$

$$h_t \ge \underbrace{\frac{(1+\tau_c)\,\underline{c}}{(1-\tau_L)w_t}}_{\text{Subsistence Threshold}} = \widehat{h}_t \tag{5}$$

- Second since E_t and e_t are imperfect substitutes, E_t and therefore the tax instruments $\{\tau_c, \tau_L\}$ cannot be too high.
- Comparative statics: From (4) $\frac{\partial e_t^*}{\partial E_t} < 0$, $\frac{\partial e_t^*}{\partial h_t} > 0$, $\frac{\partial e_t^*}{\partial \tau_L} < 0$, and $\frac{\partial e_t^*}{\partial \tau_c} < 0$

• Dynamics of the model pinned down by:

$$egin{array}{rcl} \widehat{h}_t &>& \overline{h}_t \ \overline{h}_t &<& \widehat{h}_t \ \widehat{h}_t &=& \overline{h}_t \end{array}$$

• We therefore get

$$h_{t+1} = \begin{cases} B\left(E_t^{\rho} + \theta\left(e_t^*\right)^{\rho}\right)^{\frac{\alpha}{\rho}}\left(a_t h_t\right)^{\delta}, \ h_t > \overline{h}_t \text{ and } h_t > \widehat{h}_t \\ B\left(E_t\right)^{\alpha}\left(a_t h_t\right)^{\delta}, \ h_t > \overline{h}_t \text{ and } h_t < \widehat{h}_t \\ B\left(E_t\right)^{\alpha}\left(a_t\right)^{\delta} \text{ otherwise} \end{cases}$$
(6)

(UNU-WIDER)

ullet When ho=1, we get

$$e_t^* = \left\{ egin{array}{c} rac{lpha \overline{e}_t - \phi E_t}{(\phi + lpha) heta}, \ \overline{e}_t > rac{\phi E_t}{lpha heta} \ 0, & ext{otherwise} \end{array}
ight.$$

Image: Image:

and

$$h_{t+1} = \begin{cases} B\left[\left(\frac{\alpha}{\phi+\alpha}\right)\left(E_t + \theta\overline{e}_t\right)\right]^{\alpha}\left(a_t h_t\right)^{\delta}, \ h_t > \overline{h}_t \text{ and } h_t > \widehat{h}_t \\ B\left(E_t\right)^{\alpha}\left(a_t h_t\right)^{\delta}, \ h_t > \overline{h}_t \text{ and } h_t < \widehat{h}_t \\ B\left(E_t\right)^{\alpha}\left(a_t\right)^{\delta}, \text{ otherwise} \end{cases}$$
(8)

æ

(7)

- Data period 1985 to 2005.
- Pick the state with the median public education spending share as a fraction of NSDP for 15 Indian states (Tamil Nadu)
- Choose parameters such that the simulated model's moments match observed moments in the data for this state..
- There are seven moments that need to be matched.
 - Growth rate from 1985-2005
 - Public Edu. Expenditure / NSDP in 1985 and 2005
 - Private Edu. Expenditure /NSDP in 1985 and 2005
 - Gini Coefficient in 1985 and 2005
- Run counter-factual experiments

- For the tax experiments, we calibrate the model to match the median public education spending share as a fraction of GDP for 15 Indian states (3.2%)
- We then range the education spending fraction in our experiments from 2.57% (second lowest) to 4.24% (second highest)
- No clear data on private expenditure on education

private expenditure share $=\left(\frac{r}{1-r}\right) \times$ public expenditure share

where r = share of enrollment of students in private school.

- Gini coefficients used to pin down the variance of the distribution of h such that h ≥ 1 and has a mean normalized to 10
- Given that all the tax collected goes towards public education spending, we assume $\tau_c = 0.02$
- $\Delta = 1$ and $\tau_L = 0.015$ so as to match the public expenditure ratio of 0.0342 which is true during the concerned period
- $\delta = 0.8$ and $\alpha = 0.2$ to match the Gini coefficient of our data sample and to maintain CRS
- $\phi=$ 8 and heta= 1.5 to match the private expenditure shares in data
- Consumption Gini coefficient fixed at $\frac{1}{3}$
- We simulate the model for 500 families

Parameter	Value	Parameter	Value	Parameter	Value
$\overline{\mathrm{mean}(h_0)}$	10	α	0.20	ϕ	8
$\operatorname{var}(h_0)$	36.70	δ	0.80	θ	1.5
<u>c</u>	4	mean(a)	1	ψ	0.05
$ au_c$	0.02	$\operatorname{var}(a)$	0.05	w	1
Δ	1	B	5.5	ho	0.50
$ au_l$	0.015				

æ

	Data	Model
Annualized Growth Rate	0.0646	0.0570
Gini Coefficient, 1985	0.3200	0.3200
Gini Coefficient, 2005	0.3200	0.3416
Public Expenditure Share (nE/Y) , 1985	0.0330	0.0342
Public Expenditure Share (nE/Y) , 2005	0.0350	0.0341
Private Expenditure Share $(1/Y \sum e)$, 1985	0.0037	0.0049
Private Expenditure Share $(1/Y \sum e)$, 2005	0.0085	0.0096

- Above table shows the observed and simulated moments.
- The cutoff human capital level, $\overline{h} = F_{h_t}^{-1}(\psi)$, where F_{H_t} is the human capital cumulative distribution at t. For example, when $\psi = x$, x% of parent's *do not* augment their child's ability.
- ullet Assume $\psi=$ 0.05 and the efficiency wage w is normalized to unity

Experiment 1: Changing the consumption tax to finance higher E

- We change τ_c so as to change public expenditure spending from 3.42% to 2.57% and 4.24%
- Increasing E_t by increasing τ_c causes contrasting income and substitution effects which work in opposite directions. A higher E_t also crowds out e^{*}_t which is higher for higher ρ.

•
$$\tau_c \uparrow \Longrightarrow e_t \downarrow \text{(income effect)}$$

•
$$au_c \uparrow \Longrightarrow c_t \downarrow \Longrightarrow e_t \uparrow ({
m substitution effect})$$

- $\tau_c \uparrow \Longrightarrow E_t \uparrow \Longrightarrow e_t \downarrow \text{(direct effect)}$
- Net effect $\Longrightarrow e_t \downarrow$
- As ρ ↓, may even get crowding in (because E and e are more (less) complimentary (substitutable))

Net effects on e_t : $\tau_c \uparrow \Longrightarrow E_t \uparrow$ and $e_t^* \downarrow$, although $e_t^* \downarrow$ not by a lot. Doubling τ_c increases E_t but lowers e_t^* by not more than 2%

Net effects on human capital growth $\left(\frac{h_{t+1}}{h_t}\right)$: Doubling τ_c increases human capital growth rate but by less than 3%, although more perceptible over time

Experiment 1: Calibrated effect on the level of human capital

Net effects on level of human capital: The average family becomes wealthier by 1.1% in 20 years, by 3.49% in 40 years, by 5.16% in 60 years, by 6.74% in 80 years, and by 8.39% in 100 years.

Experiment 1: Calibrated effect on inequality

A higher τ_c causes inequality to fall over time, but by very little

This is because $\tau_c \uparrow \Longrightarrow$ after tax income \downarrow . But preferences are non-homothetic $\Longrightarrow e \downarrow$ (proportionately) more for richer households than poorer households \Longrightarrow downward pressure on inequality.

(UNU-WIDER)

5-6 September, 2014 21 / 44

Experiment 2: Changing the labor income tax to finance a higher E

- Now there are no substitution effects, only an income effect.
 - $\tau_L \uparrow \Longrightarrow e \downarrow (\text{income effect})$
 - $\tau_L \uparrow \Longrightarrow E_t \uparrow \Longrightarrow e_t \downarrow (\text{Direct Effect})$
 - Net effect on $e_t \downarrow$ higher
 - This is because of no compensating substitution effect
- We change τ_L so as to change public expenditure spending from 3.42% to 2.57% and 4.24%
- Numerical effects: in comparison to a au_c \uparrow ,
 - $\tau_L \uparrow \Longrightarrow e \downarrow$ by more but the difference is only about 1.5% to 2%(very small)
 - Growth: τ_L ↑ ⇒ e ↓ by more ⇒ h increases by less (although not very significantly) over a span of 100 years ⇒ growth ↑ by less compared to previous case.
 - Inequality: τ_L ↑ ⇒ inequality ↓ by more. This is because, for the wealthy, e ↓ by a lot more because they have a higher marginal product of e compared to the poor ⇒ gaps get bridged

Experiment 2: Changing the labor income tax to finance a higher E

- Now there are no substitution effects, only an income effect.
 - $\tau_L \uparrow \Longrightarrow e \downarrow \text{(income effect)}$
 - $\tau_L \uparrow \Longrightarrow E_t \uparrow \Longrightarrow e_t \downarrow (\text{Direct Effect})$
 - Net effect on $e_t \downarrow$ higher
 - This is because of no compensating substitution effect
- We change τ_L so as to change public expenditure spending from 3.42% to 2.57% and 4.24%
- Numerical effects: in comparison to a au_c \uparrow ,
 - $\tau_L \uparrow \Longrightarrow e \downarrow$ by more but the difference is only about 1.5% to 2%(very small)
 - Growth: *τ_L* ↑ ⇒ *e* ↓ by more ⇒ *h* increases by less (although not very significantly) over a span of 100 years ⇒ growth ↑ by less compared to previous case.
 - Inequality: τ_L ↑ ⇒ inequality ↓ by more. This is because, for the wealthy, e ↓ by a lot more because they have a higher marginal product of e compared to the poor ⇒ gaps get bridged

Experiment 2: Changing the labor income tax to finance a higher E

- Now there are no substitution effects, only an income effect.
 - $\tau_L \uparrow \Longrightarrow e \downarrow \text{(income effect)}$
 - $\tau_L \uparrow \Longrightarrow E_t \uparrow \Longrightarrow e_t \downarrow (\text{Direct Effect})$
 - Net effect on $e_t \downarrow$ higher
 - This is because of no compensating substitution effect
- We change τ_L so as to change public expenditure spending from 3.42% to 2.57% and 4.24%
- Numerical effects: in comparison to a au_c \uparrow ,
 - $\tau_L \uparrow \Longrightarrow e \downarrow$ by more but the difference is only about 1.5% to 2%(very small)
 - Growth: τ_L ↑⇒ e ↓ by more ⇒ h increases by less (although not very significantly) over a span of 100 years ⇒ growth ↑ by less compared to previous case.
 - Inequality: τ_L ↑⇒ inequality ↓ by more. This is because, for the wealthy, e ↓ by a lot more because they have a higher marginal product of e compared to the poor ⇒ gaps get bridged

Experiment 2: Calibrated effect on e

- A pure windfall for the state ($\Delta \uparrow$)- a change in the centre-state transfer does not generate the same substitution effect as under the consumption tax
- Pure wealth effect because of the windfall: $e_t \uparrow \Longrightarrow \frac{h_{t+1}}{h_t} \uparrow$.
- Numerically however, it does little to boost private education nor does it substantially increase human capital accumulation (compared to a consumption tax)
- This is because the outlet for net transfer is higher consumption.

• Effects: In comparison to a $au_c \uparrow$ or a $au_L \uparrow$

- Most of the change goes towards private consumption; $e \uparrow$ very marginal
- Growth: since Δ ↑ mainly means freeing of up of resources, the initial increase (60 years) in h is slightly higher than due to a τ_c ↑. However, this initial difference does not last for long. As a result, growth effects are also not significant
- Inequality: since, the effect on e is very small, the effect on lowering inequality is again not significantly different compared to a τ_c ↑. This could have potentially been a stronger force had the transfers been directed specifically towards poor households.

- Effects: In comparison to a $au_c \uparrow$ or a $au_L \uparrow$
 - Most of the change goes towards private consumption; $e \uparrow$ very marginal
 - Growth: since $\Delta \uparrow$ mainly means freeing of up of resources, the initial increase (60 years) in *h* is slightly higher than due to a $\tau_c \uparrow$. However, this initial difference does not last for long. As a result, growth effects are also not significant
 - Inequality: since, the effect on e is very small, the effect on lowering inequality is again not significantly different compared to a τ_c ↑. This could have potentially been a stronger force had the transfers been directed specifically towards poor households.

- Effects: In comparison to a $au_c \uparrow$ or a $au_L \uparrow$
 - Most of the change goes towards private consumption; $e \uparrow$ very marginal
 - Growth: since $\Delta \uparrow$ mainly means freeing of up of resources, the initial increase (60 years) in *h* is slightly higher than due to a $\tau_c \uparrow$. However, this initial difference does not last for long. As a result, growth effects are also not significant
 - Inequality: since, the effect on e is very small, the effect on lowering inequality is again not significantly different compared to a τ_c ↑. This could have potentially been a stronger force had the transfers been directed specifically towards poor households.

Experiment 3: Comparative effect on e

 $e_t^* \downarrow$ by more due to an increase in τ_L

(UNU-WIDER)

5-6 September, 2014 26 / 44

Experiment 3: Comparative effect on the level of human capital

Average human capital \uparrow by a little more than due to an increase in au_c

(UNU-WIDER)

5-6 September, 2014 27 / 44

Experiment 3: Comparative effect on the Gini coefficient

Not significantly different

(UNU-WIDER)

5-6 September, 2014 28 / 44

Experiment 3: Comparative effect on the average consumption level

 $\tau_c \uparrow$ lowers consumption in the short run, but increases over time - by stimulating growth in human capital accumulation. Transfers increases consumption by most.

(UNU-WIDER)

5-6 September, 2014 29 / 44

		1985	2005	2025	2045	2065
	$ au_{ m c}$	-0.0058	-0.0022	-0.0113	-0.0137	-0.0121
$oldsymbol{ ho}=0.01$	$ au_1$	-0.0139	-0.0098	-0.0439	-0.0736	-0.1016
	Δ	-0.0008	-0.0034	-0.0447	-0.0761	-0.1035
	$ au_{ m c}$	-0.0160	-0.0085	-0.0085	-0.0086	-0.0087
$oldsymbol{ ho}=0.10$	$ au_1$	-0.0258	-0.0169	-0.0168	-0.0169	-0.0170
	Δ	-0.0120	-0.0082	-0.0086	-0.0087	-0.0087
	$ au_{ m c}$	-0.0524	-0.0252	-0.0249	-0.0252	-0.0254
$oldsymbol{ ho}=0.25$	$ au_1$	-0.0647	-0.0345	-0.0339	-0.0342	-0.0344
	Δ	-0.0492	-0.0245	-0.0249	-0.0253	-0.0256
	$ au_{ m c}$	-0.1198	-0.0796	-0.0687	-0.0685	-0.0691
$oldsymbol{ ho}=0.50$	$ au_1$	-0.1362	-0.0928	-0.0794	-0.0791	-0.0797
	Δ	-0.1173	-0.0787	-0.0688	-0.0689	-0.0696
	$ au_{ m c}$	-0.2255	-0.1966	-0.1720	-0.1601	-0.1577
$oldsymbol{ ho}=0.75$	$ au_1$	-0.2396	-0.2116	-0.1864	-0.1742	-0.1716
	Δ	-0.2231	-0.1959	-0.1728	-0.1608	-0.1586
	$ au_{ m c}$	-0.3095	-0.3565	-0.3679	-0.3840	-0.3861
$oldsymbol{ ho}=1.00$	$ au_1$	-0.3263	-0.3748	-0.3873	-0.4031	-0.4056
	Δ	-0.3054	-0.3549	-0.3674	-0.3839	-0.3863

5-6 September, 2014

30 / 44

Human Capital

Sensitivity Analysis – Average human capital

		1985	2005	2025	2045	2065	2085
	$ au_{ m c}$	0.0000	0.0156	0.0152	0.0139	0.0124	0.0111
ho=0.01	$ au_1$	0.0000	0.0139	0.0474	0.0795	0.1134	0.1493
	Δ	0.0000	0.0166	0.0507	0.0824	0.1157	0.1513
	$ au_{ m c}$	0.0000	0.0117	0.0276	0.0444	0.0611	0.0791
$oldsymbol{ ho}=0.10$	$ au_1$	0.0000	0.0083	0.0229	0.0385	0.0545	0.0714
	Δ	0.0000	0.0123	0.0283	0.0451	0.0620	0.0802
	$ au_{ m c}$	0.0000	0.0111	0.0263	0.0435	0.0599	0.0776
$oldsymbol{ ho}=0.25$	$ au_1$	0.0000	0.0085	0.0229	0.0389	0.0542	0.0710
	Δ	0.0000	0.0114	0.0268	0.0441	0.0606	0.0784
	$ au_{ m c}$	0.0000	0.0185	0.0349	0.0516	0.0674	0.0839
$oldsymbol{ ho}=0.50$	$ au_1$	0.0000	0.0170	0.0321	0.0480	0.0627	0.0782
	Δ	0.0000	0.0187	0.0353	0.0522	0.0681	0.0848
	$ au_{ m c}$	0.0000	0.0220	0.0375	0.0525	0.0678	0.0833
$oldsymbol{ ho}=0.75$	$ au_1$	0.0000	0.0213	0.0359	0.0498	0.0641	0.0786
	Δ	0.0000	0.0222	0.0379	0.0529	0.0684	0.0840
	$ au_{ m c}$	0.0000	0.0273	0.0497	0.0694	0.0876	0.1062
ho = 1.00	$ au_1$	0.0000	0.0268	0.0486	0.0674	0.0848	0.1026
	Δ	0.0000	0.0274	0.0499	0.0697	0.0879	0.1066

Image: Image:

Sensitivity Analysis – Gini coefficient of parents

		1985	2005	2025	2045	2065	2085
	$ au_{ m c}$	0.0000	0.0014	0.0009	0.0008	0.0007	0.0006
$oldsymbol{ ho}=0.01$	$ au_1$	0.0000	0.0034	0.0037	0.0043	0.0043	0.0049
	Δ	0.0000	-0.0001	-0.0005	-0.0004	-0.0003	-0.0002
	$ au_{ m c}$	0.0000	0.0064	0.0057	0.0043	0.0033	0.0018
$oldsymbol{ ho}=0.10$	$ au_1$	0.0000	0.0104	0.0099	0.0083	0.0068	0.0052
	Δ	0.0000	0.0062	0.0056	0.0041	0.0032	0.0017
	$ au_{ m c}$	0.0000	-0.0024	-0.0056	-0.0073	-0.0097	-0.0106
$oldsymbol{ ho}=0.25$	$ au_1$	0.0000	-0.0017	-0.0049	-0.0069	-0.0097	-0.0105
	Δ	0.0000	-0.0023	-0.0056	-0.0073	-0.0097	-0.0107
	$ au_{ m c}$	0.0000	-0.0227	-0.0224	-0.0229	-0.0264	-0.0294
$oldsymbol{ ho}=0.50$	$ au_1$	0.0000	-0.0237	-0.0223	-0.0227	-0.0267	-0.0298
	Δ	0.0000	-0.0225	-0.0223	-0.0229	-0.0265	-0.0295
	$ au_{ m c}$	0.0000	-0.0245	-0.0364	-0.0391	-0.0412	-0.0473
$oldsymbol{ ho}=0.75$	$ au_1$	0.0000	-0.0256	-0.0379	-0.0408	-0.0429	-0.0491
	Δ	0.0000	-0.0244	-0.0364	-0.0389	-0.0412	-0.0473
	$ au_{ m c}$	0.0000	-0.0246	-0.0484	-0.0695	-0.0840	-0.0992
ho = 1.00	$ au_1$	0.0000	-0.0255	-0.0502	-0.0723	-0.0874	-0.1031
	Δ	0.0000	-0.0244	-0.0481	-0.0693	-0.0839	-0.0991

Sensitivity Analysis – Average consumption

		1985	2005	2025	2045	2065
	${m au_{ m c}}$	-0.0081	0.0073	0.0070	0.0056	0.0041
$oldsymbol{ ho}=0.01$	$ au_1$	-0.0080	0.0057	0.0389	0.0707	0.1044
·	Δ	0.0000	0.0167	0.0507	0.0824	0.1157
	${m au}_{ m c}$	-0.0080	0.0036	0.0194	0.0360	0.0526
$oldsymbol{ ho}=0.10$	$ au_1$	-0.0079	0.0003	0.0148	0.0302	0.0461
	Δ	0.0001	0.0124	0.0284	0.0453	0.0622
	${m au}_{ m c}$	-0.0078	0.0032	0.0184	0.0354	0.0516
$oldsymbol{ ho}=0.25$	$ au_1$	-0.0077	0.0007	0.0150	0.0309	0.0461
	Δ	0.0003	0.0117	0.0272	0.0445	0.0610
	${m au}_{ m c}$	-0.0075	0.0110	0.0273	0.0440	0.0597
$oldsymbol{ ho}=0.50$	$ au_1$	-0.0074	0.0097	0.0246	0.0404	0.0551
	Δ	0.0006	0.0195	0.0361	0.0531	0.0691
	${m au}_{ m c}$	-0.0072	0.0152	0.0307	0.0456	0.0608
$oldsymbol{ ho}=0.75$	$ au_1$	-0.0071	0.0146	0.0292	0.0431	0.0573
	Δ	0.0009	0.0236	0.0395	0.0546	0.0701
	$ au_{ m c}$	-0.0071	0.0206	0.0433	0.0630	0.0813
$oldsymbol{ ho}=1.00$	$ au_1$	-0.0071	0.0202	0.0423	0.0612	0.0786
	Δ	0.0010	0.0290	0.0520	0.0720	0.0904

(UNU-WIDER)

-5-6 September, 2014

Parental human capital effectivity – Private education spending share

		1985	2005	2025	2045	2065
$oldsymbol{\psi}=0.00$	$rac{{m au}_{ m c}}{{m au}_{ m l}}$	-0.1198 -0.1362	-0.0786 -0.0926	-0.0698 -0.0804	-0.0697 -0.0803	-0.0704 -0.0811
	Δ	-0.1173	-0.0778	-0.0699	-0.0701	-0.0709
$oldsymbol{\psi}=0.10$	$egin{array}{c} {m au}_{ m c} \ {m au}_{ m 1} \ {m \Delta} \end{array}$	-0.1198 -0.1362 -0.1173	-0.0781 -0.0904 -0.0772	-0.0671 -0.0781 -0.0675	-0.0672 -0.0778 -0.0676	-0.0677 -0.0783 -0.0682
$oldsymbol{\psi}=0.20$	$egin{array}{c} {m au}_{ m c} \ {m au}_{ m 1} \ {m \Delta} \end{array}$	-0.1198 -0.1362 -0.1173	-0.0746 -0.0869 -0.0738	-0.0645 -0.0751 -0.0646	-0.0642 -0.0747 -0.0646	-0.0646 -0.0752 -0.0651
$oldsymbol{\psi}=0.40$	$egin{array}{c} {m au}_{ m c} \ {m au}_{ m 1} \ {m \Delta} \end{array}$	-0.1198 -0.1362 -0.1173	-0.0640 -0.0747 -0.0633	-0.0583 -0.0688 -0.0585	-0.0572 -0.0676 -0.0576	-0.0571 -0.0674 -0.0576

		1985	2005	2025	2045	2065	2085
	$ au_{ m c}$	0.0000	0.0187	0.0360	0.0532	0.0694	0.0864
$oldsymbol{\psi}=0.00$	$ au_1$	0.0000	0.0172	0.0330	0.0494	0.0644	0.0805
	Δ	0.0000	0.0189	0.0364	0.0538	0.0701	0.0872
	${m au}_{ m c}$	0.0000	0.0182	0.0341	0.0504	0.0658	0.0819
$oldsymbol{\psi}=0.10$	$ au_1$	0.0000	0.0167	0.0315	0.0469	0.0612	0.0764
	Δ	0.0000	0.0184	0.0345	0.0510	0.0665	0.0828
	$ au_{ m c}$	0.0000	0.0174	0.0321	0.0476	0.0621	0.0776
$oldsymbol{\psi}=0.20$	$ au_1$	0.0000	0.0158	0.0293	0.0439	0.0573	0.0717
	Δ	0.0000	0.0176	0.0325	0.0482	0.0629	0.0784
	$ au_{ m c}$	0.0000	0.0146	0.0276	0.0413	0.0537	0.0672
$oldsymbol{\psi}=0.40$	$ au_1$	0.0000	0.0128	0.0249	0.0376	0.0488	0.0613
	Δ	0.0000	0.0148	0.0281	0.0419	0.0545	0.0681

Parental human capital effectivity – Gini coefficient of parents

		1985	2005	2025	2045	2065	2085
$oldsymbol{\psi}=0.00$	$egin{array}{c} {m au_{ m c}} \ {m au_{ m l}} \ {m \Delta} \end{array}$	0.0000 0.0000 0.0000	-0.0239 -0.0250 -0.0237	-0.0263 -0.0260 -0.0263	-0.0277 -0.0274 -0.0277	-0.0318 -0.0321 -0.0319	-0.0356 -0.0359 -0.0357
$oldsymbol{\psi}=0.10$	$egin{array}{c} {m au_{ m c}} \ {m au_{ m l}} \ {m \Delta} \end{array}$	0.0000 0.0000 0.0000	-0.0211 -0.0220 -0.0209	-0.0194 -0.0195 -0.0193	-0.0193 -0.0191 -0.0192	-0.0221 -0.0223 -0.0220	-0.0244 -0.0245 -0.0244
$oldsymbol{\psi}=0.20$	$egin{array}{c} {m au_{ m c}} \ {m au_{ m l}} \ {m \Delta} \end{array}$	0.0000 0.0000 0.0000	-0.0175 -0.0182 -0.0173	-0.0136 -0.0135 -0.0136	-0.0128 -0.0125 -0.0128	-0.0151 -0.0151 -0.0152	-0.0166 -0.0165 -0.0166
$\psi = 0.40$	$rac{{m au_{ m c}}}{{m au_{ m l}}}$	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\end{array}$	-0.0112 -0.0115 -0.0111	-0.0070 -0.0071 -0.0070	-0.0055 -0.0054 -0.0055	-0.0065 -0.0065 -0.0065	-0.0073 -0.0072 -0.0073

		1985	2005	2025	2045	2065
	$ au_{ m c}$	-0.1198	-0.0796	-0.0687	-0.0685	-0.0691
$oldsymbol{\delta}=0.80$	$ au_1$	-0.1362	-0.0928	-0.0794	-0.0791	-0.0797
	Δ	-0.1173	-0.0787	-0.0688	-0.0689	-0.0696
	$ au_{ m c}$	-0.1327	-0.0962	-0.0779	-0.0765	-0.0767
$oldsymbol{\delta}=0.85$	$ au_1$	-0.1611	-0.1140	-0.0889	-0.0876	-0.0876
	Δ	-0.1305	-0.0955	-0.0780	-0.0769	-0.0771
	${m au_{ m c}}$	-0.2691	-0.1427	-0.0926	-0.0888	-0.0885
$oldsymbol{\delta}=0.90$	$ au_1$	-0.2771	-0.1568	-0.1045	-0.0998	-0.0996
	Δ	-0.2677	-0.1421	-0.0927	-0.0891	-0.0889

		1985	2005	2025	2045	2065	2085
	$ au_{ m c}$	0.0000	0.0185	0.0349	0.0516	0.0674	0.0839
$oldsymbol{\delta}=0.80$	$ au_1$	0.0000	0.0170	0.0321	0.0480	0.0627	0.0782
	Δ	0.0000	0.0187	0.0353	0.0522	0.0681	0.0848
	$ au_{ m c}$	0.0000	0.0185	0.0318	0.0451	0.0588	0.0724
$oldsymbol{\delta}=0.85$	$ au_1$	0.0000	0.0167	0.0284	0.0406	0.0538	0.0669
	Δ	0.0000	0.0186	0.0321	0.0455	0.0592	0.0729
	$ au_{ m c}$	0.0000	0.0133	0.0223	0.0325	0.0428	0.0535
$oldsymbol{\delta}=0.90$	$ au_1$	0.0000	0.0133	0.0217	0.0314	0.0413	0.0516
	Δ	0.0000	0.0134	0.0223	0.0327	0.0430	0.0537

		1985	2005	2025	2045	2065	2085
	$ au_{ m c}$	0.0000	-0.0227	-0.0224	-0.0229	-0.0264	-0.0294
$oldsymbol{\delta}=0.80$	$ au_1$	0.0000	-0.0237	-0.0223	-0.0227	-0.0267	-0.0298
	Δ	0.0000	-0.0225	-0.0223	-0.0229	-0.0265	-0.0295
	$ au_{ m c}$	0.0000	-0.0172	-0.0174	-0.0183	-0.0189	-0.0219
$oldsymbol{\delta}=0.85$	$ au_1$	0.0000	-0.0194	-0.0186	-0.0204	-0.0204	-0.0227
	Δ	0.0000	-0.0171	-0.0174	-0.0183	-0.0190	-0.0219
	$ au_{ m c}$	0.0000	-0.0127	-0.0155	-0.0152	-0.0154	-0.0161
$oldsymbol{\delta}=0.90$	$ au_1$	0.0000	-0.0128	-0.0158	-0.0155	-0.0158	-0.0165
	Δ	0.0000	-0.0127	-0.0154	-0.0153	-0.0155	-0.0161

э

		1985	2005	2025	2045	2065
	$ au_{ m c}$	-0.0075	0.0110	0.0273	0.0440	0.0597
$oldsymbol{\delta}=0.80$	$ au_1$	-0.0074	0.0097	0.0246	0.0404	0.0551
	Δ	0.0006	0.0195	0.0361	0.0531	0.0691
	$ au_{ m c}$	-0.0077	0.0109	0.0241	0.0373	0.0509
$oldsymbol{\delta}=0.85$	$ au_1$	-0.0076	0.0092	0.0208	0.0329	0.0460
	Δ	0.0004	0.0192	0.0327	0.0461	0.0599
	$ au_{ m c}$	-0.0078	0.0056	0.0144	0.0246	0.0348
$oldsymbol{\delta}=0.90$	$ au_1$	-0.0078	0.0056	0.0139	0.0236	0.0333
	Δ	0.0003	0.0138	0.0228	0.0331	0.0434

- ρ ↑⇒ elasticity of substitution between private and public spending on education is higher ⇒ more crowding out of e due to an increase in taxes ⇒ e ↓ by more
 - Growth: e ↓ by more is mitigated by E ↑ by more, hence, increases in growth due to E ↑ are also large. This is because e and E are also less complementary. Growth gains due to Δ ↑> τ_c ↑> τ_L ↑.
 - Inequality: ρ ↑ ⇒ inequality reduces by more because of E ↑. This is because, crowding out of E to lower e affects rich households relatively more
- Therefore $\rho \uparrow \Longrightarrow$ public spending matter more!

- ρ ↑⇒⇒ elasticity of substitution between private and public spending on education is higher ⇒⇒ more crowding out of e due to an increase in taxes ⇒⇒ e ↓ by more
 - Growth: $e \downarrow$ by more is mitigated by $E \uparrow$ by more, hence, increases in growth due to $E \uparrow$ are also large. This is because e and E are also less complementary. Growth gains due to $\Delta \uparrow > \tau_c \uparrow > \tau_L \uparrow$.
- Therefore $\rho \uparrow \Longrightarrow$ public spending matter more!

In a nutshell – sensitivity analysis of changing the parental human capital cutoff

- ψ ↑⇒⇒ fewer parents can augment their child's human capital accumulation ⇒ the effect of E ↑ on growth is lesser
- ψ ↑⇒ upward pressure on inequality, but the crowding out effect of *E* ↑ causes inequality to actually fall although by less for higher ψ
- Therefore $\psi \uparrow \Longrightarrow$ public spending matter less!

- Raising public spending on education increases economic growth by raising taxes or transfers. As substitutability between public and private education spending increases,
 - higher public spending first yields smaller economic growth gains, before gains increase
 - inequality is reduced
- Higher public spending yields smaller growth gains and inequality reductions as the parental human capital cut-off is increased
- Relatively large changes in funding levels for education have relatively minor impacts both on growth and on evolution of income inequality
- Policy implications public funding on education has only minor effects on growth and lowering inequality. This is especially true when fewer parents intellectually contribute to a child's human capital accumulation.

- Raising public spending on education increases economic growth by raising taxes or transfers. As substitutability between public and private education spending increases,
 - higher public spending first yields smaller economic growth gains, before gains increase
 - inequality is reduced
- Higher public spending yields smaller growth gains and inequality reductions as the parental human capital cut-off is increased
- Relatively large changes in funding levels for education have relatively minor impacts both on growth and on evolution of income inequality
- Policy implications public funding on education has only minor effects on growth and lowering inequality. This is especially true when fewer parents intellectually contribute to a child's human capital accumulation.

Thank you!

				ED
	1/1		- 1/1/	 ER.
0	1.1	0		

æ

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A