Are Manufacturing Firms in Clusters More Productive? Evidence from Vietnam

Emma Howard Carol Newman John Rand Finn Tarp

Motivation

- Clustering facilitates growth
- Empirical evidence of agglomeration economies
- Limited empirical evidence linking clustering to firm performance
- Number of mechanisms through which firms in clusters may be more productive
- Firms may 'self select' into productive clusters

Contribution

- We use a rich and unique data set of firms from Vietnam
- We extend the Olley Pakes (1996) approach to control for self selection
- This allows us to identify how locating in a cluster impacts on firm productivity
- Future work will attempt to uncover the mechanisms

Data

- Vietnamese Enterprise Survey for 2002-2007 (GSO, 2010)
- Unbalanced Panel, all registered manufacturing firms with >30 employees
- Information on commune in which firm is located plus assets, employees etc

Methodology

- Extend Olley Pakes (1996) approach by controlling for cluster productivity when estimating firm productivity
- Similar approach to De Loecker (2007) who controlled for export status
- Two main parts to the analysis
- Estimate firm productivity controlling for cluster productivity
- 2) Estimate the impact of cluster productivity on firm productivity

Olley Pakes Estimation

Traditional productivity estimation
— Cobb
Douglas production function, estimate
coefficients, then productivity given by;

$$\omega_{it} = y_{it} - \hat{\beta_i} l_{it} - \hat{\beta_k} k_{it}$$

- Results in two main biases; simultaneity and survival bias
- OP controls for both in 3 step estimation procedure

Extended OP: Control for Self-Selection

Assume:

- i. productivity follows a first-order Markov process
- ii. Cobb Douglas Production function
- iii. Investment monotonically increasing in productivity
- Proxy productivity by a function in investment, capital and cluster productivity
- 1st stage: consistent estimate for coefficient of labour
- 2nd stage: predicted probability of survival
- 3rd stage: consistent estimate for coefficient of capital

- Investment given by: $i_t = k_t k_{t-1}$
- Output = total revenue of firm
- Labour = total number of employees
- Capital = total assets at time t
- Average productivity of cluster:
- index number approach to measure TFP
- for firm i take average of all other firms in cluster
- firm and cluster specific variable

	OLS	Commune	District	Province
Capital	0.622***	0.674***	0.685***	0.691***
	(0.005)	(0.036)	(0.036)	(0.034)
Labour	0.489***	0.190***	0.193***	0.198***
	(0.006)	(0.002)	(0.009)	(0.007)
Av Cluster Productivity		0.002	0.021**	0.006
		(0.006)	(0.011)	(0.013)
Observations	35,154	17,306	19,370	19,703

	OLS	Commune	District	Province
Capital	0.622***	0.674***	0.685***	0.691***
	(0.005)	(0.036)	(0.036)	(0.034)
Labour	0.489***	0.190***	0.193***	0.198***
	(0.006)	(0.002)	(0.009)	(0.007)
Av Cluster Productivity		0.002	0.021**	0.006
		(0.006)	(0.011)	(0.013)
Observations	35,154	17,306	19,370	19,703

	OLS	Commune	District	Province
Capital	0.622***	0.674***	0.685***	0.691***
	(0.005)	(0.036)	(0.036)	(0.034)
Labour	0.489***	0.190***	0.193***	0.198***
	(0.006)	(0.002)	(0.009)	(0.007)
Av Cluster Productivity		0.002	0.021**	0.006
•		(0.006)	(0.011)	(0.013)
Observations	35,154	17,306	19,370	19,703
	4.1	at district		

Methodology (2)

 We then estimate the impact of the cluster on the productivity of the firm

$$\omega_{it} = \beta_0 + \beta_1 \omega_{it-1} + \beta_2 i_{t-1} + \beta_3 p_{cit-1} + \varepsilon_{it}$$

where
$$\omega_{it} = y_{it} - \hat{\beta_l} l_{it} - \hat{\beta_k} k_{it}$$

	Commune		District		Prov	vince
	(1)	(2)	(1)	(2)	(1)	(2)
Productivity (t-1)	0.464***	0.464***	0.457***	0.458***	0.562***	0.458***
	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)
Investment (t-1)	0.036***	0.040***	0.034***	0.036***	0.033***	0.035***
	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)
Av Cluster Prod (t-1)	0.019***	-0.008	0.033***	0.007	0.096***	0.046
	(0.003)	(0.013)	(0.005)	(0.016)	(0.010)	(0.026)
Inv(t-1)*Cluster Prod(t-1)		0.003**		0.003*		0.006*
		(0.002)		(0.002)		(0.003)
Province Dummies	Yes	Yes	Yes	Yes	Yes	Yes
Sector Dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations	17,306	17,306	19,370	19,370	19,703	19,703
R-squared	0.34	0.34	0.33	0.33	0.33	0.33

	Com	mune	District		Province	
	(1)	(2)	(1)	(2)	(1)	(2)
Productivity (t-1)	0.464***	0.464***	0.457***	0.458***	0.562***	0.458***
•	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)
Investment (t-1)	0.036***	0.040***	0.034***	0.036***	0.033***	0.035***
	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)
Av Cluster Prod (t-1)	0.019***	-0.008	0.033***	0.007	0.096***	0.046
	(0.003)	(0.013)	(0.005)	(0.016)	(0.010)	(0.026)
Inv(t-1)*Cluster Prod(t-1)		0.003**		0.003*		0.006*
		(0.002)		(0.002)		(0.003)
Province Dummies	Yes	Yes	Yes	Yes	Yes	Yes
Sector Dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations	17,306	17,306	19,370	19,370	19,703	19,703
R-squared	0.34	0.34	0.33	0.33	0.33	0.33

	Com	mune	District		Province	
	(1)	(2)	(1)	(2)	(1)	(2)
Productivity (t-1)	0.464***	0.464***	0.457***	0.458***	0.562***	0.458***
	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)
Investment (t-1)	0.036***	0.040***	0.034***	0.036***	0.033***	0.035***
•	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)
Av Cluster Prod (t-1)	0.019***	-0.008	0.033***	0.007	0.096***	0.046
	(0.003)	(0.013)	(0.005)	(0.016)	(0.010)	(0.026)
Inv(t-1)*Cluster Prod(t-1)		0.003**		0.003*		0.006*
		(0.002)		(0.002)		(0.003)
Province Dummies	Yes	Yes	Yes	Yes	Yes	Yes
Sector Dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations	17,306	17,306	19,370	19,370	19,703	19,703
R-squared	0.34	0.34	0.33	0.33	0.33	0.33

	Com	mune	Dist	District		ince
	(1)	(2)	(1)	(2)	(1)	(2)
Productivity (t-1)	0.464***	0.464***	0.457***	0.458***	0.562***	0.458***
	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)
Investment (t-1)	0.036***	0.040***	0.034***	0.036***	0.033***	0.035***
	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)
Av Cluster Prod (t-1)	0.019***	-0.008	0.033***	0.007	0.096***	0.046
	(0.003)	(0.013)	(0.005)	(0.016)	(0.010)	(0.026)
Inv(t-1)*Cluster Prod(t-1)		0.003**		0.003*		0.006*
		(0.002)		(0.002)		(0.003)
Province Dummies	Yes	Yes	Yes	Yes	Yes	Yes
Sector Dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations	17,306	17,306	19,370	19,370	19,703	19,703
R-squared	0.34	0.34	0.33	0.33	0.33	0.33

	Com	mune	District		Province	
	(1)	(2)	(1)	(2)	(1)	(2)
Productivity (t-1)	0.464***	0.464***	0.457***	0.458***	0.562***	0.458***
	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)
Investment (t-1)	0.036***	0.040***	0.034***	0.036***	0.033***	0.035***
	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)
Av Cluster Prod (t-1)	0.019***	-0.008	0.033***	0.007	0.096***	0.046
	(0.003)	(0.013)	(0.005)	(0.016)	(0.010)	(0.026)
Inv(t-1)*Cluster Prod(t-1)		0.003**		0.003*		0.006*
		(0.002)		(0.002)	•	(0.003)
Province Dummies	Yes	Yes	Yes	Yes	Yes	Yes
Sector Dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations	17,306	17,306	19,370	19,370	19,703	19,703
R-squared	0.34	0.34	0.33	0.33	0.33	0.33

Conclusions and Next Steps

- Evidence of productivity spillovers
- Investment necessary to benefit from spillovers

Next Steps:

- Estimate productivity separately for each fourdigit sector
- Robustness checks: other cluster characteristics- labour productivity, size of cluster
- Mechanisms: technology transfers, foreign firms, competitors

Thank you

howardek@tcd.ie