

A Unified Structural Equation Modeling Approach for the Decomposition of Rank-Dependent Indicators of Socioeconomic Inequality of Health

Roselinde Kessels & Guido Erreygers Friday 5 September 2014

Universiteit Antwerpen

Socioeconomic Inequality of Health

- Deals with *two dimensions*: socioeconomic status (SES) and health
- Widely measured by *rank-dependent indicators*: they measure SES by the ranks which individuals occupy in the socioeconomic distribution, and health (or ill-health) by the levels of the health variable under consideration
- Most well-known indicator is the Concentration Index (CI), which has two versions: the relative or standard CI and the absolute or generalized CI

Relative and Generalized Concentration Curves

Fig. 1. Relative and generalized concentration curves.

Aim of the Paper

- To provide the right framework for a regression-based decomposition analysis to explain the generalized CI (GC), which measures the degree of correlation between health and SES
- We show that a structural equation modeling (SEM) framework forms the basis for proper use of existing decompositions
- We highlight the one-dimensional decompositions where either health or SES is subject to a regression and the most salient two-dimensional simultaneous decomposition proposed by Erreygers and Kessels (2013)

Basic Notations

- Population of *n* individuals (1, 2, ..., *n*)
- Health variable h, individual health levels $h_1, h_2, ..., h_n$
 - Ratio-scale (nonnegative) or cardinal (with finite lower bound)
- SES variable y, individual levels y₁, y₂, ..., y_n
- SES rank variable r = r(y), individual ranks $r_1, r_2, ..., r_n$
 - Least well-off individual has rank 1, most well-off rank *n*; average $\mu_r = (n + 1)/2$
 - Fractional ranks $f_i \equiv 1/n \ge (r_i \frac{1}{2})$; average $\mu_f = \frac{1}{2}$
 - Fractional rank deviations $d_i \equiv f_i \mu_f$; average $\mu_d = 0$

Generalized Health Concentration Index (GC)

Product definition

$$GC = \frac{2}{n} \sum_{i=1}^{n} h_i d_i$$

Covariance definition

GC = 2Cov(h, d)

Health-Oriented Decomposition

- Introduced by Wagstaff, Van Doorslaer & Watanabe (2003)
- Starting point is the regression of health h

 $h_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \ldots + \beta_k x_{k,i} + \varepsilon_i$

Using the product definition of the GC, it follows that

$$GC = \frac{2}{n} \sum_{i=1}^{n} \left[\beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \dots + \beta_k x_{k,i} + \varepsilon_i \right] d_i$$

This leads to decomposition (I)

$$GC = 2\sum_{j=1}^{k} \beta_j Cov(x_j, d) + 2Cov(\varepsilon, d)$$

Rank-Oriented Decomposition

- Introduced by Erreygers & Kessels (2013)
- Starting point is the regression of the fractional rank deviation variable d

$$d_{i} = \gamma_{0} + \gamma_{1} z_{1,i} + \gamma_{2} z_{2,i} + \dots + \gamma_{q} z_{q,i} + \xi_{i}$$

Using the covariance definition of the GC results in decomposition (II)

$$GC = 2\sum_{g=1}^{q} \gamma_g Cov(h, z_g) + 2Cov(h, \xi)$$

Two-Dimensional Simultaneous Decomposition

- Introduced by Erreygers & Kessels (2013)
- Starting point is the bivariate multiple regression model explaining h and d simultaneously

$$h_i = \lambda_0 + \lambda_1 s_{1,i} + \lambda_2 s_{2,i} + \dots + \lambda_p s_{p,i} + \psi_i$$

$$d_i = \pi_0 + \pi_1 s_{1,i} + \pi_2 s_{2,i} + \dots + \pi_p s_{p,i} + \chi_i$$

Using the covariance definition of the GC results in decomposition (III)

$$GC = 2\sum_{j=1}^{p} \lambda_j \pi_j Var(s_j) + 2\sum_{j=1}^{p} \sum_{g=j+1}^{p} (\lambda_j \pi_g + \lambda_g \pi_j) Cov(s_j, s_g) + 2Cov(\psi, \chi)$$

Criticisms of the OLS Regression Models

- 1. The bivariate multiple regression model uses the same set of variables to explain both *h* and *d*
 - This may not be the most appropriate assumption given that the determinants of *h* and *d* need not be the same
- 2. In all our OLS models, the variable *d* is not included as an explanatory variable in the regression for *h*, and *h* is not included as an explanatory variable in the regression for *d*
 - The existence of a reciprocal relationship might be examined since health is potentially both a cause and a consequence of SES (O'Donnell, Van Doorslaer & Van Ourti, 2014)

OLS Regressions for *h* and *d* with *d* and *h* as Predictors

- It is misleading to include *d* (or any proxy variable strongly correlated with *d* such as income or consumption) in the OLS regression for *h* in decomposition (I) and *h* in the OLS regression for *d* in decomposition (II)
- The residual component of the decompositions will be zero, or close to zero, which is an artificial result
- E.g.: the simple regression of h on x₁ = d has an OLS estimate of β₁ equal to Cov(h,d) / Var(d) so that

$$GC = 2\frac{Cov(h,d)}{Var(d)}Cov(d,d) + 2Cov(\varepsilon,d)$$
$$= 2Cov(h,d) + 0$$

OLS Regression for *h* with SES as Predictor

- Frequently applied in decomposition (I) (e.g., Wagstaff, Van Doorslaer & Watanabe, 2003; Hosseinpoor et al., 2006; Van de Poel et al., 2007; Doherty, Walsh & O'Neill, 2014)
- The contribution of SES to the GC in decomposition (I) has been artificially large (~ 30%)
- However, it has been shown that SES is an important determinant of health
- How to combine this empirical result with the regressionbased decomposition methodology?

Starting point is the two-equation SEM

$$h_i = \beta_0 + \sum_{j=1}^{k-1} \beta_j x_{j,i} + \beta_k d_i + \varepsilon_i$$

$$d_i = \gamma_0 + \sum_{g=1}^{q-1} \gamma_g z_{g,i} + \gamma_q h_i + \xi_i$$

- The variables *h* and *d* are assumed endogenous
- To consistently estimate all parameters, estimation occurs through generalized method of moments (GMM) using instrumental variables (IV)

Substituting for *d* and *h* on the right-hand side of the equations yields

$$h_{i} = \beta_{0} + \sum_{j=1}^{k-1} \beta_{j} x_{j,i} + \beta_{k} \left[\gamma_{0} + \sum_{g=1}^{q-1} \gamma_{g} z_{g,i} + \gamma_{q} h_{i} + \xi_{i} \right] + \varepsilon_{i}$$
$$d_{i} = \gamma_{0} + \sum_{g=1}^{q-1} \gamma_{g} z_{g,i} + \gamma_{q} \left[\beta_{0} + \sum_{j=1}^{k-1} \beta_{j} x_{j,i} + \beta_{k} d_{i} + \varepsilon_{i} \right] + \xi_{i}$$

• Rearranging terms and assuming that $\beta_k \gamma_q \neq 1$, we obtain the following reformulation of the model, which is called the reduced form of the SEM

$$h_i = \frac{\beta_0 + \beta_k \gamma_0}{1 - \beta_k \gamma_q} + \sum_{j=1}^{k-1} \frac{\beta_j}{1 - \beta_k \gamma_q} x_{j,i} + \sum_{g=1}^{q-1} \frac{\beta_k \gamma_g}{1 - \beta_k \gamma_q} z_{g,i} + \frac{\varepsilon_i + \beta_k \xi_i}{1 - \beta_k \gamma_q}$$
$$d_i = \frac{\gamma_0 + \beta_0 \gamma_q}{1 - \beta_k \gamma_q} + \sum_{j=1}^{k-1} \frac{\beta_j \gamma_q}{1 - \beta_k \gamma_q} x_{j,i} + \sum_{g=1}^{q-1} \frac{\gamma_g}{1 - \beta_k \gamma_q} z_{g,i} + \frac{\xi_i + \gamma_q \varepsilon_i}{1 - \beta_k \gamma_q}$$

 The reduced-form equations are equivalent to the bivariate multiple regression model; they include the same set of explanatory variables, and can be directly estimated by OLS

$$h_{i} = \lambda_{0} + \lambda_{1}s_{1,i} + \lambda_{2}s_{2,i} + \dots + \lambda_{p}s_{p,i} + \psi_{i}$$
$$d_{i} = \pi_{0} + \pi_{1}s_{1,i} + \pi_{2}s_{2,i} + \dots + \pi_{p}s_{p,i} + \chi_{i}$$

- Results in decomposition (III) based on the bivariate multiple regression model
- Thus, decomposition (III) integrates the feedback mechanism between the variables *h* and *d* which are allowed to depend on different sets of predictors
- This refutes the two criticisms of the bivariate multiple regression model and the resulting decomposition (III)

Empirical Illustration: Data

- We look at stunting of children below the age of five in Ethiopia
- The data come from the latest round (2011) of the Demographic and Health Survey (DHS) of Ethiopia
- Our dataset contains 9262 children
- Stunting (malnutrition) is defined as having a low height-for-age z-score (i.e. z-score < -2 SD from median height-for-age of reference population)
- We converted stunting into a continuous bounded variable ("0" = z-score ≥ -2 SD; "1" = z-score = -6 SD)
- We selected a set of 8 variables (exogenous & instruments)
- We performed weighted regressions, using the sample weights of the DHS dataset

Descriptive Statistics

Variable	Mean	SD	Description
Degree of stunting	0.1252	0.2073	Height-for-age z-score (WHO) scaled to the interval $[0,1]$
			Degree of stunting > 0 if height-for-age z-score < -2 SD
Weighted fractional rank deviation	0	0.2952	Based on the wealth indices provided by DHS
Age of child	29.8571	17.8084	In months
Squared age of child	303.3724	270.6317	Term is mean-centered: (age of child -29.8571) ²
Sex of child	0.5140	0.5110	Male (1) , female (0)
Residence type	0.1237	0.3366	Urban (1) , rural (0)
Education of mother	1.3446	2.8587	In years
Education of partner/husband	2.7439	3.8141	In years
Safe drinking water	0.4614	0.5097	Available (1) , not available (0)
Satisfactory sanitation	0.1234	0.3362	Available (1) , not available (0)

GC = -0.0136

GMM vs. OLS Regression for the SEM

	h				d			
	GMM		OLS		GMM		OLS	
	Coefficient	t-stat	Coefficient	t-stat	Coefficient	t-stat	Coefficient	<i>t</i> -stat
Constant	0.1187	13.52^{***}	0.1240	15.32***	-0.1700	-16.01***	-0.1493	-26.15***
Age of child	0.0017	11.18***	0.0016	11.13***	_	_	_	_
Squared age of child	-0.0001	-13.48***	-0.0001	-13.55***	_	_	_	_
Sex of child	0.0143	2.41^{*}	0.0138	2.34^{*}	_	-	_	_
Residence type	_	—	_	—	0.2502	22.55***	0.2457	21.94***
Education of mother	-0.0022	-1.81*	-0.0033	-3.36***	0.0108	8.01***	0.0102	7.80***
Education of partner/husband	-0.0014	-1.27	-0.0024	-2.63***	0.0148	13.37***	0.0144	13.21***
Safe drinking water	-	—	-	—	0.1288	17.96***	0.1296	18.23***
Satisfactory sanitation	_	—	_	—	0.1132	12.17***	0.1108	11.97***
d	-0.0987	-3.46***	-0.0559	-4.67***	_	_	_	_
h	—	—	—	—	0.0826	1.25	-0.0621	-3.73***
R^2	0.0767		0.0796		0.3895		0.3996	
J		0.42		_		2.69		_
Cragg-Donald F	917.43***		_		194.31***			_

Decomposition (I)

Decomposition (II)

Decomposition (III)

	Direct effect	Combined effect							
		Age	Squared	Sex	Residence	Education	Education	Safe	
		child	age child	child	type	mother	partner	water	
Age child	-2.49								
Squared age child	0.04	-0.19							
Sex child	-0.32	-0.02	0.03						
Residence type	10.05	0.15	0.31	0.03					
Education mother	4.41	0.54	0.19	0.01	6.50				
Education partner	8.99	0.92	0.75	0.00	7.86	7.60			
Safe water	-1.57	-0.46	-0.88	0.04	1.99	2.00	1.86		
Satisfactory sanitation	3.03	0.21	-0.03	-0.03	3.51	2.01	2.52	0.69	
Component total	22.13	38.11							
Residual	39.76								
Total	100.00								

Decomposition (III) – Direct Effects

Results

- The GMM analysis of the SEM confirms previous findings that health is largely influenced by SES (= d), but the opposite relationship does not hold
 - The effect of SES on health is indirect and measured by the instruments "residence type" and "satisfactory sanitation"
- The contribution of SES (= d) in decomposition (I) is
 42.62%, which is by far the largest
 - The contribution is indirect and measured by the variables "residence type" and "satisfactory sanitation"
 - The residual term is not zero, but equal to 38.11%

Summary

- Decomposition (III) based on the bivariate multiple regression model is also the decomposition from a SEM
- The SEM proposed is an observed-variables SEM
- Further research will involve
 - the construction of a SEM where the endogenous variables are not observed, but latent
 - indices based on socioeconomic levels rather than ranks (Erreygers & Kessels, 2014, in progress)