Modes of Exports by Sub-Saharan African Firms: Intensive Margins and Interdependencies

Seifu Zerihun and Sajal Lahiri
Caterpillar Inc. and Southern Illinois University
(seifezerihun@yahoo.com and lahiri@siu.edu)

June 20, 2013
Many have investigated export behavior of manufacturers that sell directly to another country.
Many have investigated export behavior of manufacturers that sell directly to another country. Very few have analyzed exports that involve intermediaries.
Many have investigated export behavior of manufacturers that sell directly to another country.

Very few have analyzed exports that involve intermediaries.

Bernard et al. (2010a) reported that the share of exports via intermediaries in total export range from 3% for Malaysia to 41% for Cameroon and Sri Lanka, averaging 17%.
Many have investigated export behavior of manufacturers that sell directly to another country.

Very few have analyzed exports that involve intermediaries.

Bernard et al. (2010a) reported that the share of exports via intermediaries in total exports range from 3% for Malaysia to 41% for Cameroon and Sri Lanka, averaging 17%.

A survey conducted by World Bank (2002-09) for 151 countries revealed that 25% of exporting firms export indirectly.
Introduction

- Many have investigated export behavior of manufacturers that sell directly to another country.
- Very few have analyzed exports that involve intermediaries.
- Bernard et al. (2010a) reported that the share of exports via intermediaries in total exports range from 3% for Malaysia to 41% for Cameroon and Sri Lanka, averaging 17%.
- A survey conducted by World Bank (2002-09) for 151 countries revealed that 25% of exporting firms export indirectly.
- The Middle East and the North Africa region has the largest proportion of indirect exporters (46%) and the Sub-Saharan Africa has 35%.
World Bank found that more than a quarter of exporters in food and garment industries used intermediaries to export 4% in paper industry.
World Bank found that more than a quarter of exporters in food and garment industries used intermediaries to export 4% in paper industry.

This may possibly, as Melitz (2003) noted, be due to a distribution technology that requires the exporting firm in a specific industry to incur a quantity-invariant cost to export.
Introduction

- World Bank found that more than a quarter of exporters in food and garment industries used intermediaries to export.
- This may possibly, as Melitz (2003) noted, be due to a distribution technology that requires the exporting firm in a specific industry to incur a quantity-invariant cost to export.
- Compared to direct exporters, indirect exporters are mainly medium- and small-sized enterprises.
World Bank found that more than a quarter of exporters in food and garment industries used intermediaries to export 4% in paper industry.

This may possibly, as Melitz (2003) noted, be due to a distribution technology that requires the exporting firm in a specific industry to incur a quantity-invariant cost to export.

Compared to direct exporters, indirect exporters are mainly medium- and small-sized enterprises.

In the past studies, these firms have not been treated as a separate group.
Introduction

- World Bank found that more than a quarter of exporters in food and garment industries used intermediaries to export 4% in paper industry.

- This may possibly, as Melitz (2003) noted, be due to a distribution technology that requires the exporting firm in a specific industry to incur a quantity-invariant cost to export.

- Compared to direct exporters, indirect exporters are mainly medium- and small-sized enterprises.

- In the past studies, these firms have not been treated as a separate group.

- And almost never, policy makers made these distinctions when formulating policies that affect exporters.
Few studies that deal with firm’s choice of trade channels focus mainly on examining the relationship between producers and their intermediaries.
Few studies that deal with firm’s choice of trade channels focus mainly on examining the relationship between producers and their intermediaries.

Lahiri and Ono (1999) theoretically investigate the nature of optimal tariff by making the distinction between producers and sellers.
Few studies that deal with firm’s choice of trade channels focus mainly on examining the relationship between producers and their intermediaries.

Lahiri and Ono (1999) theoretically investigate the nature of optimal tariff by making the distinction between producers and sellers.

The roles of intermediaries are explored by Rauch and Watson (2004) and Petropoulou (2007) by developing a model that bridges the networking gap between producers and consumers.
The Literature

- Few studies that deal with firm’s choice of trade channels focus mainly on examining the relationship between producers and their intermediaries.
- Lahiri and Ono (1999) theoretically investigate the nature of optimal tariff by making the distinction between producers and sellers.
- The roles of intermediaries are explored by Rauch and Watson (2004) and Petropoulou (2007) by developing a model that bridges the networking gap between producers and consumers.
- Bernard et al. (2010a) conduct an empirical investigation on the role of intermediaries and examine how they differ from manufacturing firms, using cross-border transactions data for Italy.
Bernard et al. (2010b) study the heterogeneity among trading U.S. firms.
Bernard et al. (2010b) study the heterogeneity among trading U.S. firms. They categorized trading firms into six groups viz., firms that are engaged in pure retailing and wholesaling, pure consuming and producing, mixed wholesaling plus retailing and mixed producing plus consuming firms.
Bernard et al. (2010b) study the heterogeneity among trading U.S. firms.

They categorized trading firms into six groups viz., firms that are engaged in pure retailing and wholesaling, pure consuming and producing, mixed wholesaling plus retailing and mixed producing plus consuming firms.

According to Melitz (2003) and Bernard et al (2010a), the least productive firms serve only the domestic market while the most productive firms can export directly by incurring the fixed cost of export and trade costs.
Bernard et al. (2010b) study the heterogeneity among trading U.S. firms. They categorized trading firms into six groups viz., firms that are engaged in pure retailing and wholesaling, pure consuming and producing, mixed wholesaling plus retailing and mixed producing plus consuming firms.

According to Melitz (2003) and Bernard et al (2010a), the least productive firms serve only the domestic market while the most productive firms can export directly by incurring the fixed cost of export and trade costs.

A third category of firms chooses to export indirectly through intermediaries.
What we do

- We make a clear distinction between exporters that export directly and those who do via intermediaries.
What we do

- We make a clear distinction between exporters that export directly and those who do via intermediaries.
- Firms are assumed to have already decided which mode of export to undertake.
What we do

- We make a clear distinction between exporters that export directly and those who do via intermediaries.
- Firms are assumed to have already decided which mode of export to undertake.
- I.e., we are concerned only with intensive margins and the extensive margin decisions are taken as exogenous.
We make a clear distinction between exporters that export directly and those who do via intermediaries.

Firms are assumed to have already decided which mode of export to undertake.

I.e., we are concerned only with intensive margins and the extensive margin decisions are taken as exogenous.

we investigate their interdependence in the presence of government subsidy.
What we do

- We make a clear distinction between exporters that export directly and those who do via intermediaries.
- Firms are assumed to have already decided which mode of export to undertake.
- I.e., we are concerned only with intensive margins and the extensive margin decisions are taken as exogenous.
- We investigate their interdependence in the presence of government subsidy.
- We formulate a theoretical framework and support its predictions with data from Sub-Saharan countries.
What we do

- We make a clear distinction between exporters that export directly and those who do via intermediaries.
- Firms are assumed to have already decided which mode of export to undertake.
- I.e., we are concerned only with intensive margins and the extensive margin decisions are taken as exogenous.
- We investigate their interdependence in the presence of government subsidy.
- We formulate a theoretical framework and support its predictions with data from Sub-Saharan countries.
- We try to answer questions such as how does change in efficiency level by one mode exporter affects the production decision of the other mode exporter in the same industry?
What we do

- What is the role of competition among exporters?
What we do

- What is the role of competition among exporters?
- How policy changes targeting one type mode exporter affect the output decision of exporters of either mode?
What we do

- What is the role of competition among exporters?
- How policy changes targeting one type mode exporter affect the output decision of exporters of either mode?
- In the presence of socially optimal subsidy, what is the inter-dependence between the different mode exporters of the same product?
What we do

- What is the role of competition among exporters?
- How policy changes targeting one type mode exporter affect the output decision of exporters of either mode?
- In the presence of socially optimal subsidy, what is the inter-dependence between the different mode exporters of the same product?
- Industrial or foreign trade policy that address indirect exporters as an integral part of any export promotion policy, are rarely found.
What we do

- What is the role of competition among exporters?
- How policy changes targeting one type mode exporter affect the output decision of exporters of either mode?
- In the presence of socially optimal subsidy, what is the inter-dependence between the different mode exporters of the same product?
- Industrial or foreign trade policy that address indirect exporters as an integral part of any export promotion policy, are rarely found.
- For this reason, we address government subsidy targeting only direct exporters.
What we do

- What is the role of competition among exporters?
- How policy changes targeting one type mode exporter affect the output decision of exporters of either mode?
- In the presence of socially optimal subsidy, what is the inter-dependence between the different mode exporters of the same product?
- Industrial or foreign trade policy that address indirect exporters as an integral part of any export promotion policy, are rarely found.
- For this reason, we address government subsidy targeting only direct exporters.
- We find that the socially optimal policy is to tax direct exporters.
What we do

- What is the role of competition among exporters?
- How policy changes targeting one type mode exporter affect the output decision of exporters of either mode?
- In the presence of socially optimal subsidy, what is the inter-dependence between the different mode exporters of the same product?
- Industrial or foreign trade policy that address indirect exporters as an integral part of any export promotion policy, are rarely found.
- For this reason, we address government subsidy targeting only direct exporters.
- We find that the socially optimal policy is to tax direct exporters.
- Competition among direct exporters has a negative effect on export production for both direct and indirect exporters.
Theoretical Analysis

- We consider \(n \) number of identical direct-mode exporters.
Theoretical Analysis

- We consider n number of identical direct-mode exporters
- Competitive indirect-mode exporters engaged in producing a homogeneous product for purpose of exports.
Theoretical Analysis

- We consider n number of identical direct-mode exporters
- Competitive indirect-mode exporters engaged in producing a homogeneous product for purpose of exports.
- A third domestic non-producing firm acts only as a sole intermediary for the indirect-mode exporter
Theoretical Analysis

- We consider \(n \) number of identical direct-mode exporters
- Competitive indirect-mode exporters engaged in producing a homogeneous product for purpose of exports.
- A third domestic non-producing firm acts only as a sole intermediary for the indirect-mode exporter
- The intermediary firms form a simple vertical relationship with the producers.
Theoretical Analysis

- We consider \(n \) number of identical direct-mode exporters
- Competitive indirect-mode exporters engaged in producing a homogeneous product for purpose of exports.
- A third domestic non-producing firm acts only as a sole intermediary for the indirect-mode exporter
- The intermediary firms form a simple vertical relationship with the producers.
- All exporters face the same linear inverse market demand function \(p = \alpha - \beta X \), where \(p \) is export price and
Theoretical Analysis

- We consider \(n \) number of identical direct-mode exporters.
- Competitive indirect-mode exporters engaged in producing a homogeneous product for purpose of exports.
- A third domestic non-producing firm acts only as a sole intermediary for the indirect-mode exporter.
- The intermediary firms form a simple vertical relationship with the producers.
- All exporters face the same linear inverse market demand function \(p = \alpha - \beta X \), where \(p \) is export price and
- \(X \) is the total demand in the export market, i.e., \(X = nx^d + x^{id} + g \), with \(x^d \): output of each direct exporter, \(x^{id} \): the output the indirect-exporting firms, and \(g \): exogenous output from other suppliers in other countries than the country in consideration here.
Each direct exporting firm receives a production subsidy at the rate \(s \) per unit of export, and
Each direct exporting firm receives a production subsidy at the rate s per unit of export, and maximizes its profit

$$\pi_i^d = px^d_i - \delta(x^d_i)^2 - F + sx^d_i,$$
Each direct exporting firm receives a production subsidy at the rate s per unit of export, and maximizes its profit

$$\pi^d_i = px^d_i - \delta(x^d_i)^2 - F + sx^d_i,$$

where total variable cost function is given by $\delta(x^d_i)^2$ and each firm also incurs a fixed cost of F.

Theoretical Analysis

- Each direct exporting firm receives a production subsidy at the rate s per unit of export, and
- maximizes its profit $\pi^d_i = px^d_i - \delta(x^d_i)^2 - F + sx^d_i$,
- where total variable cost function is given by $\delta(x^d_i)^2$ and each firm also incurs a fixed cost of F.
- Profits of the representative indirect-exporting firm (producer) and the intermediary firm (seller) are given, respectively, by
 $\pi^{id} = qx^{id} - \gamma(x^{id})^2$, $\pi^m = ((\alpha - \beta X) - q)x^{id} - F$,
Theoretical Analysis

- Each direct exporting firm receives a production subsidy at the rate s per unit of export, and
- maximizes its profit $\pi^d_i = px^d_i - \delta(x^d_i)^2 - F + sx^d_i$,
- where total variable cost function is given by $\delta(x^d_i)^2$ and each firm also incurs a fixed cost of F.
- Profits of the representative indirect-exporting firm (producer) and the intermediary firm (seller) are given, respectively, by
 $\pi^{id} = qx^{id} - \gamma(x^{id})^2$, $\pi^m = ((\alpha - \beta X) - q)x^{id} - F$,
- where q is the price (received from the intermediary) taken by the indirect-exporting as given.
Theoretical Analysis

- Each direct exporting firm receives a production subsidy at the rate s per unit of export, and maximizes its profit $\pi^d_i = px^d_i - \delta(x^d_i)^2 - F + sx^d_i,$
- where total variable cost function is given by $\delta(x^d_i)^2$ and each firm also incurs a fixed cost of F.
- Profits of the representative indirect-exporting firm (producer) and the intermediary firm (seller) are given, respectively, by $\pi^{id} = qx^{id} - \gamma(x^{id})^2$, $\pi^m = ((\alpha - \beta X) - q)x^{id} - F$,
- where q is the price (received from the intermediary) taken by the indirect-exporting as given.
- The total cost of the indirect-exporting firm is $\gamma(x^{id})^2$
Assuming Cournot competition, the profit-maximizing condition for each direct exporting firms is
\[\frac{\partial \pi_d^i}{\partial x_i^d} = (\alpha - \beta X) - \beta x_i^d - 2\delta x_i^d + s = 0, \]
Theoretical Analysis

- Assuming Cournot competition, the profit-maximizing condition for each direct exporting firms is
 \[\frac{\partial \pi^d_i}{\partial x^d_i} = (\alpha - \beta X) - \beta x^d_i - 2\delta x^d_i + s = 0, \]

- while, the indirect-exporting firm's profit maximization condition is \(q = 2\gamma(x^{id}) \).
Assuming Cournot competition, the profit-maximizing condition for each direct exporting firm is
\[\frac{\partial \pi_i^d}{\partial x_i^d} = (\alpha - \beta X) - \beta x_i^d - 2\delta x_i^d + s = 0, \]
while, the indirect-exporting firm’s profit maximization condition is
\[q = 2\gamma(x_{id}). \]

The intermediary firm maximizes profits by taking the indirect-exporting firm’s reaction function into consideration. The first-order condition is
\[\frac{\partial \pi_m}{\partial x_{id}} = (\alpha - \beta X) - \beta x_{id} - 4\gamma x_{id} = 0. \]
Theoretical Analysis

- Assuming Cournot competition, the profit-maximizing condition for each direct exporting firms is
 \[
 \frac{\partial \pi_i^d}{\partial x_i^d} = (\alpha - \beta X) - \beta x_i^d - 2\delta x_i^d + s = 0,
 \]
- while, the indirect-exporting firm’s profit maximization condition is
 \[q = 2\gamma(x^{id}).\]
- The intermediary firm maximizes profits by taking the indirect-exporting firm’s reaction function into consideration. The first-order condition is
 \[
 \frac{\partial \pi_m}{\partial x^{id}} = (\alpha - \beta X) - \beta x^{id} - 4\gamma x^{id} = 0.
 \]
- The welfare of the country is defined as
 \[W = n\pi^d + \pi^{id} + \pi^m - nsx^d.\] consumer surplus being absent as all outputs are exported.
Comparative statics

- We first of all examine the effect of a change in production efficiency parameters δ and γ of the two sets of producing firms on the levels of outputs.
We first of all examine the effect of a change in production efficiency parameters δ and γ of the two sets of producing firms on the levels of outputs.

We find:

$$\frac{dx^d}{d\delta} = -4x^d \frac{2(\beta + 2\gamma)}{\Delta} < 0,$$

$$\frac{dx^{id}}{d\gamma} = -4x^{id} \frac{2\delta + \beta (n + 1)}{\Delta} < 0,$$

$$\frac{dx^d}{d\gamma} = 4x^{id} \frac{\beta}{\Delta} > 0,$$

$$\frac{dx^{id}}{d\delta} = 2nx^d \frac{\beta}{\Delta} > 0,$$

where for stability of the Nash equilibrium we must have $\Delta = 2\beta^2 + 4\beta \gamma + 8\delta \gamma + n\beta^2 + 4\beta \delta + 4n\beta \gamma > 0$. The results are as one would expect an increase in inefficiency of one type of firm decreases its own output and increases the output of the other type.
Comparative statics

- We first of all examine the effect of a change in production efficiency parameters δ and γ of the two sets of producing firms on the levels of outputs.

- We find:

$$\frac{dx^d}{d\delta} = -4x^d \frac{2(\beta + 2\gamma)}{\Delta} < 0, \quad \frac{dx^{id}}{d\gamma} = -4x^{id} \frac{2\delta + \beta(n+1)}{\Delta} < 0,$$

$$\frac{dx^d}{d\gamma} = 4x^{id} \frac{\beta}{\Delta} > 0, \quad \frac{dx^{id}}{d\delta} = 2nx^d \frac{\beta}{\Delta} > 0,$$

- where for stability of the Nash equilibrium we must have $\Delta = 2\beta^2 + 4\beta\gamma + 8\delta\gamma + n\beta^2 + 4\beta\delta + 4n\beta\gamma > 0$.

Comparative statics

- We first of all examine the effect of a change in production efficiency parameters δ and γ of the two sets of producing firms on the levels of outputs.

- We find:

\[
\frac{dx^d}{d\delta} = -4x^d \frac{2(\beta + 2\gamma)}{\Delta} < 0, \quad \frac{dx^{id}}{d\gamma} = -4x^{id} \frac{2\delta + \beta (n + 1)}{\Delta} < 0,
\]

\[
\frac{dx^d}{d\gamma} = 4x^d \frac{\beta}{\Delta} > 0, \quad \frac{dx^{id}}{d\delta} = 2nx^d \frac{\beta}{\Delta} > 0,
\]

- where for stability of the Nash equilibrium we must have $\Delta = 2\beta^2 + 4\beta\gamma + 8\delta\gamma + n\beta^2 + 4\beta\delta + 4n\beta\gamma > 0$.

- The results are as one would expect an increase in inefficiency of one type of firm decreases its own output and increases the output of the other type.
Comparative statics

Next we examine the effect of a change in the competition parameter n (the number of direct-exporting firms) and in the level of subsidy s to the direct-exporting firms.
Next we examine the effect of a change in the competition parameter n (the number of direct-exporting firms) and in the level of subsidy s to the direct-exporting firms.

We find:

\[
\frac{dx^d}{dn} = -\frac{\beta (\beta + 4\gamma) x^d}{\Delta} < 0,
\]

\[
\frac{dx^{id}}{dn} = -\frac{(\beta + 2\delta) \beta x^d}{\Delta} < 0,
\]

\[
\frac{dx^d}{ds} = \frac{2(\beta + 2\gamma)}{\Delta} > 0,
\]

\[
\frac{dx^{id}}{ds} = -\frac{n\beta}{\Delta} < 0.
\]
Comparative statics

- Next we examine the effect of a change in the competition parameter n (the number of direct-exporting firms) and in the level of subsidy s to the direct-exporting firms.

- We find:

$$\frac{dx^d}{dn} = -\frac{\beta (\beta + 4\gamma) x^d}{\Delta} < 0, \quad \frac{dx^{id}}{dn} = -\frac{(\beta + 2\delta) \beta x^d}{\Delta} < 0,$$

$$\frac{dx^d}{ds} = \frac{2(\beta + 2\gamma)}{\Delta} > 0, \quad \frac{dx^{id}}{ds} = -\frac{n\beta}{\Delta} < 0.$$

- An increase in production subsidy for the direct-exporting firms increases their outputs and reduces the output of its rival firm.
Comparative statics

Next we examine the effect of a change in the competition parameter n (the number of direct-exporting firms) and in the level of subsidy s to the direct-exporting firms.

We find:

$$\frac{dx^d}{dn} = -\frac{\beta(\beta + 4\gamma)x^d}{\Delta} < 0,$$

$$\frac{dx^{id}}{dn} = -\frac{(\beta + 2\delta)\beta x^d}{\Delta} < 0,$$

$$\frac{dx^d}{ds} = \frac{2(\beta + 2\gamma)}{\Delta} > 0,$$

$$\frac{dx^{id}}{ds} = -\frac{n\beta}{\Delta} < 0.$$

An increase in production subsidy for the direct-exporting firms increases their outputs and reduces the output of its rival firm.

An increase in the number of direct-exporting firms, increases the level of competition in the industry and reduces the output of each and every firm in the industry: direct-exporting firms and indirect-exporting firms.
We now analyze the effect of competition and efficiency levels on outputs of direct and indirect exporters when the subsidy rate \(s \) is optimally chosen.
Optimal subsidy to direct exporters

- We now analyze the effect of competition and efficiency levels on outputs of direct and indirect exporters when the subsidy rate s is optimally chosen.
- **Optimal subsidy is derived to be:**
 \[
 s = \frac{\alpha \beta [16 \gamma^2 (1 - n) + 2 \beta \gamma (3 - 4n) - 4 \beta \delta - n \beta^2 - 12 \gamma \delta]}{2n \beta^3 + 18n \beta^2 \gamma + 8 \delta \beta^2 + 32n \beta \gamma^2 + 32 \delta \beta \gamma + 32 \delta \gamma^2} < 0.
 \]
Optimal subsidy to direct exporters

- We now analyze the effect of competition and efficiency levels on outputs of direct and indirect exporters when the subsidy rate s is optimally chosen.
- Optimal subsidy is derived to be:

 $$s = \frac{\alpha \beta [16\gamma^2(1-n) + 2\beta \gamma(3-4n) - 4\beta \delta - n\beta^2 - 12\gamma \delta]}{2n\beta^3 + 18n\beta^2 \gamma + 8\delta \beta^2 + 32n\beta \gamma^2 + 32\delta \beta \gamma + 32\delta \gamma^2} < 0.$$

- The usual Marshallian subsidy argument here does not hold because their outputs are not domestically consumed.
Optimal subsidy to direct exporters

- We now analyze the effect of competition and efficiency levels on outputs of direct and indirect exporters when the subsidy rate s is optimally chosen.
- Optimal subsidy is derived to be:
 $$s = \frac{\alpha \beta [16\gamma^2(1-n) + 2\beta\gamma(3-4n) - 4\beta\delta - n\beta^2 - 12\gamma\delta]}{2n\beta^3 + 18n\beta^2\gamma + 8\delta\beta^2 + 32n\beta\gamma^2 + 32\delta\beta\gamma + 32\delta\gamma^2} < 0.$$
- The usual Marshallian subsidy argument here does not hold because their outputs are not domestically consumed.
- The government treat the direct-exporting firms less favorably than the indirect one. There are two reasonst.
Optimal subsidy to direct exporters

- We now analyze the effect of competition and efficiency levels on outputs of direct and indirect exporters when the subsidy rate s is optimally chosen.
- Optimal subsidy is derived to be:

 $$s = \frac{\alpha \beta [16\gamma^2 (1 - n) + 2\beta \gamma (3 - 4n) - 4\beta \delta - n\beta^2 - 12\gamma \delta]}{2n\beta^3 + 18n\beta^2 \gamma + 8\delta \beta^2 + 32n\beta \gamma^2 + 32\delta \beta \gamma + 32\delta \gamma^2} < 0.$$

- The usual Marshallian subsidy argument here does not hold because their outputs are not domestically consumed.
- The government treat the direct-exporting firms less favorably than the indirect one. There are two reasons.
 - Revenue-raising considerations tip the argument in favor of tax, and
Optimal subsidy to direct exporters

- We now analyze the effect of competition and efficiency levels on outputs of direct and indirect exporters when the subsidy rate s is optimally chosen.
- Optimal subsidy is derived to be:

$$s = \frac{\alpha \beta [16\gamma^2(1 - n) + 2\beta\gamma(3 - 4n) - 4\beta\delta - n\beta^2 - 12\gamma\delta]}{2n\beta^3 + 18n\beta^2\gamma + 8\delta\beta^2 + 32n\beta\gamma^2 + 32\delta\beta\gamma + 32\delta\gamma^2} < 0.$$

- The usual Marshallian subsidy argument here does not hold because their outputs are not domestically consumed.
- The government treat the direct-exporting firms less favorably than the indirect one. There are two reasonst.
- Revenue-raising considerations tip the argument in favor of tax, and
- the price-taking behavior of the indirect-exporting firm makes the distortion caused by the indirect exporter less harmful that that caused by the direct exporter.
Comparative statics with optimal subsidy

- We now carry out the comparative static by additionally considering the indirect effect via induced changes in the optimal subsidy rate.
Comparative statics with optimal subsidy

- We now carry out the comparative static by additionally considering the indirect effect via induced changes in the optimal subsidy rate.
- The total effect is given by

\[
\frac{dx^d}{dy} = \frac{\partial x^d}{\partial y} + \frac{\partial x^d}{\partial s} \frac{ds}{dy}, \quad \frac{dx^{id}}{dy} = \frac{\partial x^{id}}{\partial y} + \frac{\partial x^{id}}{\partial s} \frac{ds}{dy}, \quad (y = \delta, \gamma, n.)
\]
Comparative statics with optimal subsidy

- We now carry out the comparative static by additionally considering the indirect effect via induced changes in the optimal subsidy rate.
- The total effect is given by
 \[
 \frac{dx^d}{dy} = \frac{\partial x^d}{\partial y} + \frac{\partial x^d}{\partial s} \frac{ds}{dy'} \quad \frac{dx^{id}}{dy} = \frac{\partial x^{id}}{\partial y} + \frac{\partial x^{id}}{\partial s} \frac{ds}{dy'}, \quad (y = \delta, \gamma, n.)
 \]
- After substitutions, we find:
 \[
 \frac{dx^d}{dn} < 0, \quad \frac{dx^{id}}{dn} < 0, \quad \frac{dx^d}{d\delta} < 0, \quad \frac{dx^{id}}{d\delta} > 0.
 \]
Comparative statics with optimal subsidy

- We now carry out the comparative static by additionally considering the indirect effect via induced changes in the optimal subsidy rate.
- The total effect is given by

\[
\frac{dx^d}{dy} = \frac{\partial x^d}{\partial y} + \frac{\partial x^d}{\partial s} \frac{ds}{dy}, \quad \frac{dx^{id}}{dy} = \frac{\partial x^{id}}{\partial y} + \frac{\partial x^{id}}{\partial s} \frac{ds}{dy}, \quad (y = \delta, \gamma, n.)
\]

- After substitutions, we find:

\[
\frac{dx^d}{dn} < 0, \quad \frac{dx^{id}}{dn} < 0, \quad \frac{dx^d}{d\delta} < 0, \quad \frac{dx^{id}}{d\delta} > 0.
\]

- If \(x^{id} / (nx^d + x^{id}) \geq A \), we have \(dx^d / d\gamma \geq 0 \) and \(dx^{id} / d\gamma \leq 0 \).
Comparative statics with optimal subsidy

- We now carry out the comparative static by additionally considering the indirect effect via induced changes in the optimal subsidy rate.
- The total effect is given by

\[
\frac{dx^d}{dy} = \frac{\partial x^d}{\partial y} + \frac{\partial x^d}{\partial s} \frac{ds}{dy}, \quad \frac{dx^{id}}{dy} = \frac{\partial x^{id}}{\partial y} + \frac{\partial x^{id}}{\partial s} \frac{ds}{dy}, \quad (y = \delta, \gamma, n.)
\]

- After substitutions, we find:

\[
\frac{dx^d}{dn} < 0, \quad \frac{dx^{id}}{dn} < 0, \quad \frac{dx^d}{d\delta} < 0, \quad \frac{dx^{id}}{d\delta} > 0.
\]

- If \(x^{id} /(nx^d + x^{id}) \geq A \), we have \(dx^d / d\gamma \geq 0 \) and \(dx^{id} / d\gamma \leq 0 \).

- That is, for both the direct-exporting and the indirect exporting firms, the indirect effect can sometime dominate; however, under the stated sufficient condition the direct effects dominate.
Empirical Analysis

From the theoretical model in last section, we derive two sets of hypotheses to test.
Empirical Analysis

- From the theoretical model in last section, we derive two sets of hypotheses to test.
- The first set is when subsidy is exogenous and the second set is when it is endogenous.
Empirical Analysis

- From the theoretical model in last section, we derive two sets of hypotheses to test.
- The first set is when subsidy is exogenous and the second set is when it is endogenous.
- Following the first set of results for the case of exogenous subsidy, we test the hypothesis that a positive relationship exists between exporter’s own efficiency and subsidy levels and its level of exports and negative cross effects.
Empirical Analysis

- From the theoretical model in last section, we derive two sets of hypotheses to test.
- The first set is when subsidy is exogenous and the second set is when it is endogenous.
- Following the first set of results for the case of exogenous subsidy, we test the hypothesis that a positive relationship exists between exporter’s own efficiency and subsidy levels and its level of exports and negative cross effects.
- The theory also predicts that the effects of competition on export levels of both direct and indirect mode exporters are negative.
We test the predictions for the case of exogenous subsidy by estimating Ordinary Least Square (OLS) regressions.
Empirical Analysis

- We test the predictions for the case of exogenous subsidy by estimating Ordinary Least Square (OLS) regressions.
- We regress log net sales from export for both direct and indirect exporters against a number of explanatory variables such as representing levels of efficiency, level of cross efficiency, competition, and subsidy.
We test the predictions for the case of exogenous subsidy by estimating Ordinary Least Square (OLS) regressions. We regress log net sales from export for both direct and indirect exporters against a number of explanatory variables such as representing levels of efficiency, level of cross efficiency, competition, and subsidy.

The estimated equations for d (direct) and id (indirect):

$$\log(\text{Export}_{i,j,k}^d) = \theta_0 + \theta_1 \text{Efficiency}_{ijk}^d + \theta_2 \text{Cefficiency}_{j,k}^d + \theta_3 \text{Competition}_{j,k} + \theta_4 \text{mtax}_{j,k} + \sum \vartheta_h Z_{i,j,k} + \mu_{i,j,k}$$

$$\log(\text{Export}_{i,j,k}^{id}) = \psi_0 + \psi_1 \text{Efficiency}_{ijk}^{id} + \psi_2 \text{Cefficiency}_{j,k}^{id} + \psi_3 \text{Competition}_{j,k} + \psi_4 \text{mtax}_{j,k} + \sum \kappa_h Z_{i,j,k} + \omega_{i,j,k}$$

where $\mu_{i,j,k}$ and $\omega_{i,j,k}$ are random error terms for firm i in sector j from country k. The efficiency level is $\text{Efficiency}_{i,j,k}$.
Empirical Analysis

- The other key variables are the sectoral average cross-efficiency levels represented by $\text{Cefficiency}^d_{j,k}$ and $\text{Cefficiency}^id_{j,k}$, $\text{Competition}_{j,k}$ for sector j in country k.
Empirical Analysis

- The other key variables are the sectoral average cross-efficiency levels represented by $C_{efficiency}^{d,j,k}$ and $C_{efficiency}^{id,j,k}$, Competition$_{j,k}$ for sector j in country k.
- The variable $mtax_{j,k}$ represents tax facing individual firms in sector j in country k. $Z_{i,j,k}$ are other firm characteristics.
The other key variables are the sectoral average cross-efficiency levels represented by $C_{\text{efficiency}}^{d}_{j,k}$ and $C_{\text{efficiency}}^{id}_{j,k}$, $\text{Competition}_{j,k}$ for sector j in country k.

The variable $m_{\text{tax}}_{j,k}$ represents tax facing individual firms in sector j in country k. $Z_{i,j,k}$ are other firm characteristics.

The second set of regressions consider the endogenous subsidy. For this we add another sector-level equation:

$$m_{\text{tax}}_{j,k} = \varphi_0 + \varphi_1 A_{\text{vEfficiency}}^{d}_{j,k} + \varphi_2 A_{\text{vEfficiency}}^{id}_{j,k} + \varphi_3 \text{Competition}_{j,k} + \varphi_4 \text{Interaction}_{j,k} + \sum \zeta_h H_{j,k} + \eta_{j,k},$$
Empirical Analysis

- The other key variables are the sectoral average cross-efficiency levels represented by $C_{efficiency}^d_{j,k}$ and $C_{efficiency}^{id}_{j,k}$, $Competition_{j,k}$ for sector j in country k.
- The variable $mtax_{j,k}$ represents tax facing individual firms in sector j in country k. $Z_{i,j,k}$ are other firm characteristics.
- The second set of regressions consider the endogenous subsidy. For this we add another sector-level equation:

\[
mtax_{j,k} = \phi_0 + \phi_1 AvEfficiency^d_{j,k} + \phi_2 AvEfficiency^{id}_{j,k} + \phi_3 Competition_{j,k} + \phi_4 Interaction_{j,k} + \sum \zeta_h H_{j,k} + \eta_{j,k},
\]

- $AvEfficiency^d_{j,k}$ and $AvEfficiency^{id}_{j,k}$ are the average efficiencies for sector j in country k for direct and indirect exporters.
Empirical Analysis

- The other key variables are the sectoral average cross-efficiency levels represented by $C_{\text{efficiency}}^{d} \, j, k$ and $C_{\text{efficiency}}^{id} \, j, k$, $\text{Competition}_{j, k}$ for sector j in country k.
- The variable $m_{\text{tax}} \, j, k$ represents tax facing individual firms in sector j in country k. $Z_{i, j, k}$ are other firm characteristics.
- The second set of regressions consider the endogenous subsidy. For this we add another sector-level equation:

$$m_{\text{tax}} \, j, k = \varphi_0 + \varphi_1 \text{AvEfficiency}^{d} \, j, k + \varphi_2 \text{AvEfficiency}^{id} \, j, k + \varphi_3 \text{Competition}_{j, k} + \varphi_4 \text{Interaction}_{j, k} + \sum \zeta_{h} H_{j, k} + \eta_{j, k},$$

- $\text{AvEfficiency}^{d} \, j, k$ and $\text{AvEfficiency}^{id} \, j, k$ are the average efficiencies for sector j in country k for direct and indirect exporters.
- Two pairs of equations are estimated using the recursive method.
Our data are from the World Bank Enterprise Survey (WBES).
Our data are from the World Bank Enterprise Survey (WBES).

Manufacturing firms engaged in either direct or indirect exports in thirty-nine sub-Saharan African countries are used for our study.
Our data are from the World Bank Enterprise Survey (WBES).

Manufacturing firms engaged in either direct or indirect exports in thirty nine sub-Saharan African countries are used for our study.

The survey was conducted between 2002 and 2010 and came from 2,311 firms from fourteen different industries.
Data

- Our data are from the World Bank Enterprise Survey (WBES).
- Manufacturing firms engaged in either direct or indirect exports in thirty nine sub-Saharan African countries are used for our study.
- The survey was conducted between 2002 and 2010 and came from 2,311 firms from fourteen different industries.
- We only include firms that utilize only one of either mode of exports, and a small number of firms that use both modes of exports are excluded.
Our data are from the World Bank Enterprise Survey (WBES).

Manufacturing firms engaged in either direct or indirect exports in thirty nine sub-Saharan African countries are used for our study.

The survey was conducted between 2002 and 2010 and came from 2,311 firms from fourteen different industries.

We only include firms that utilize only one of either mode of exports, and a small number of firms that use both modes of exports are excluded.

About 22% of the firms are indirect exporters; the rest are direct exporters.
Our data are from the World Bank Enterprise Survey (WBES).

Manufacturing firms engaged in either direct or indirect exports in thirty nine sub-Saharan African countries are used for our study.

The survey was conducted between 2002 and 2010 and came from 2,311 firms from fourteen different industries.

We only include firms that utilize only one of either mode of exports, and a small number of firms that use both modes of exports are excluded.

About 22% of the firms are indirect exporters; the rest are direct exporters.

The data gives sales and proportion of exports from sales.
Our data are from the World Bank Enterprise Survey (WBES).

Manufacturing firms engaged in either direct or indirect exports in thirty nine sub-Saharan African countries are used for our study.

The survey was conducted between 2002 and 2010 and came from 2,311 firms from fourteen different industries.

We only include firms that utilize only one of either mode of exports, and a small number of firms that use both modes of exports are excluded.

About 22% of the firms are indirect exporters; the rest are direct exporters.

The data gives sales and proportion of exports from sales.

The survey lacks price data thus we use the log of net revenue from export as dependent variable.
Data

- $Efficiency_{i,j,k}$ is relative efficiency within a sector of a country, and this is done to eliminate the effect of price changes across sectors on efficiency levels.
Data

- Efficiency$_{i,j,k}$ is relative efficiency within a sector of a country, and this is done to eliminate the effect of price changes across sectors on efficiency levels.

- The sectoral average cross-efficiency levels — denoted by by $\text{Cefficiency}^d_{j,k}$ and $\text{Cefficiency}^{id}_{j,k}$ — are the average efficiency levels in sector j from country k for direct and indirect mode exporter.
Data

- $\text{Efficiency}_{i,j,k}$ is relative efficiency within a sector of a country, and this is done to eliminate the effect of price changes across sectors on efficiency levels.

- The sectoral average cross-efficiency levels — denoted by $\text{Cefficiency}_{j,k}^d$ and $\text{Cefficiency}_{j,k}^{id}$ — are the average efficiency levels in sector j from country k for direct and indirect mode exporter.

- $\text{mtax}_{j,k}$, is the median response of direct exporters in sector j of country k, to a question that asks the respondent to rank the existing tax burden as either no obstacle, minor, moderate, major or very severe obstacle to operations.
Data

- $\text{Efficiency}_{i,j,k}$ is relative efficiency within a sector of a country, and this is done to eliminate the effect of price changes across sectors on efficiency levels.

- The sectoral average cross-efficiency levels — denoted by $\text{Cefficiency}^d_{j,k}$ and $\text{Cefficiency}^{id}_{j,k}$ — are the average efficiency levels in sector j from country k for direct and indirect mode exporter.

- $\text{mtax}_{j,k}$ is the median response of direct exporters in sector j of country k, to a question that asks the respondent to rank the existing tax burden as either no obstacle, minor, moderate, major or very severe obstacle to operations.

- $\text{Competition}^{j,k}$ represents median categorical response of direct exporters in sector j in regards to the number of competitors they face in the sector.
Other control variables included are:

- Owner \(i, j, k\): proportion of ownership by a foreign individual or company denoted by;
- Website \(i, j, k\): the use of website for business with clients and suppliers (binary variable);
- Credit \(i, j, k\): access to line of credit and overdraft facility (categorical variable); and
- Age \(i, j, k\): age of the firm.

We pick total sales figure from two years (\(Sales_i, j, k\)) and book value of machinery and equipment 1 year ago (\(Machinery_i, j, k\)) to serve as level variables in the regressions.
Other control variables included are:

- $\text{Owner}_{i,j,k}$: proportion of ownership by a foreign individual or company denoted by;
- $\text{Website}_{i,j,k}$: the use of website for business with clients and suppliers (binary variable);
- $\text{Credit}_{i,j,k}$: access to line of credit and overdraft facility (categorical variable); and
- $\text{Age}_{i,j,k}$: age of the firm.
Other control variables included are:

- \(Owner_{i,j,k} \): proportion of ownership by a foreign individual or company denoted by;
- \(Website_{i,j,k} \): the use of website for business with clients and suppliers (binary variable);
- \(Credit_{i,j,k} \): access to line of credit and overdraft facility (categorical variable); and
- \(Age_{i,j,k} \): age of the firm.

We pick total sales figure from two years (\(Sales_{i,j,k} \)) and book value of machinery and equipment 1 year ago (\(Machinery_{i,j,k} \)) to serve as level variables in the regressions.
Industry related variables are essential, *inter alia*, to investigation the interaction between direct and indirect mode exporters.
Industry related variables are essential, *inter alia*, to investigating the interaction between direct and indirect mode exporters.

We identify and constructed industry-specific variables from the aforementioned data set.
Introduction

- Industry related variables are essential, *inter alia*, to investigation the interaction between direct and indirect mode exporters.

- We identify and constructed industry-specific variables from the aforementioned data set.

- $M_{skill_{j,k}}$ is firms’ median rank of availability of skilled manpower as a business constraint in sector k. $Av_{regulation_{j,k}}$ is the average response in regards to time required to deal with government regulations. $M_{labor_{j,k}}$ refers to median severity rank of government’s labor regulation as a business constraints.
Industry related variables are essential, *inter alia*, to investigation the interaction between direct and indirect mode exporters.

We identify and constructed industry-specific variables from the aforementioned data set.

$M_dskil_{j,k}$ is firms’ median rank of availability of skilled manpower as a business constraint in sector k.

$Avregulation_{j,k}$ is the average response in regards to time required to deal with government regulations. $M_dlabor_{j,k}$ refers to median severity rank of government’s labor regulation as a business constraints.

Some country-specific variables were collected from the World Development Indicator (WDI).
Industry related variables are essential, *inter alia*, to investigation the interaction between direct and indirect mode exporters.

We identify and constructed industry-specific variables from the aforementioned data set.

$Md\text{skill}_{j,k}$ is firms’ median rank of availability of skilled manpower as a business constraint in sector k. $Av\text{regulation}_{j,k}$ is the average response in regards to time required to deal with government regulations. $Mdl\text{abor}_{j,k}$ refers to median severity rank of government’s labor regulation as a business constraints.

Some country-specific variables were collected from the World Development Indicator (WDI).

Table 1 gives the definitions of all the variables used.
Table 1: Definition of Variables

<table>
<thead>
<tr>
<th>Variable Notation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>log(Export^{id})</td>
<td>Log of export sales for direct exporter</td>
</tr>
<tr>
<td>log(Export^{id})</td>
<td>Log of export sales for indirect exporter</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Firm's own efficiency level</td>
</tr>
<tr>
<td>Cefficiency</td>
<td>Average cross efficiency levels</td>
</tr>
<tr>
<td>Competition</td>
<td>Median number of competitors of direct exporters</td>
</tr>
<tr>
<td>mtax</td>
<td>Median tax on direct exporters</td>
</tr>
<tr>
<td>Sales</td>
<td>Total sales 2 years ago</td>
</tr>
<tr>
<td>Owner</td>
<td>Percentage of firm owned by foreign private sector</td>
</tr>
<tr>
<td>Machinery</td>
<td>Machinery & equipment 1 year ago</td>
</tr>
<tr>
<td>Website</td>
<td>=1 if the firm uses website for business with clients and/or suppliers, and = 0 otherwise</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product (in 2000 constant dollar)</td>
</tr>
<tr>
<td>Age.</td>
<td>Age of the firm</td>
</tr>
<tr>
<td>Credit</td>
<td>=1 if the firm has access to line of credit and overdraft</td>
</tr>
<tr>
<td>AvEfficiency</td>
<td>Average efficiency level of direct exporter</td>
</tr>
<tr>
<td>Interaction</td>
<td>Interaction between efficiency and competition</td>
</tr>
<tr>
<td>AvSales</td>
<td>Average total sales 2 years ago</td>
</tr>
<tr>
<td>Mdskill</td>
<td>Median business constraint: skills of available workers</td>
</tr>
<tr>
<td>Avregulation</td>
<td>Av time dealing with government regulations</td>
</tr>
<tr>
<td>Mdlabor</td>
<td>Median business constraint: Business constraint: labor regulations</td>
</tr>
<tr>
<td>LGDP</td>
<td>Log of GDP</td>
</tr>
</tbody>
</table>
Sample Characteristics

- About 78% of exporters in the pooled sample export directly; the remaining 22% export via intermediaries.
Sample Characteristics

- About 78% of exporters in the pooled sample export directly; the remaining 22% export via intermediaries.
- South Africa and Kenya each contribute more than 10% of the total observations.
Sample Characteristics

- About 78% of exporters in the pooled sample export directly; the remaining 22% export via intermediaries.
- South Africa and Kenya each contribute more than 10% of the total observations.
- Chad, Sierra Leon and Liberia each accounts for only 0.04% of observations.
Sample Characteristics

- About 78% of exporters in the pooled sample export directly; the remaining 22% export via intermediaries.
- South Africa and Kenya each contribute more than 10% of the total observations.
- Chad, Sierra Leon and Liberia each accounts for only 0.04% of observations.
- Very few countries from the sub Saharan African region are missing from the data set.
Sample Characteristics

- About 78% of exporters in the pooled sample export directly; the remaining 22% export via intermediaries.
- South Africa and Kenya each contribute more than 10% of the total observations.
- Chad, Sierra Leon and Liberia each accounts for only 0.04% of observations.
- Very few countries from the sub Saharan African region are missing from the data set.
- Most manufacturing industries, according to the ISIC two digit classification, are included in this sample.
Sample Characteristics

- About 78% of exporters in the pooled sample export directly; the remaining 22% export via intermediaries.
- South Africa and Kenya each contribute more than 10% of the total observations.
- Chad, Sierra Leon and Liberia each accounts for only 0.04% of observations.
- Very few countries from the sub Saharan African region are missing from the data set.
- Most manufacturing industries, according to the ISIC two digit classification, are included in this sample.
- The extent to which one industry uses direct versus indirect mode varies quite a bit across industries.
About 78% of exporters in the pooled sample export directly; the remaining 22% export via intermediaries.

South Africa and Kenya each contribute more than 10% of the total observations.

Chad, Sierra Leon and Liberia each accounts for only 0.04% of observations.

Very few countries from the sub Saharan African region are missing from the data set.

Most manufacturing industries, according to the ISIC two digit classification, are included in this sample.

the extent to which one industry uses direct versus indirect mode varies quite a bit across industries.

Direct export mode is still the main mode of export in all the industries.
Most of the direct exporters are large and medium sized firms, and most indirect-exporting firms are medium and small sized ones.
Most of the direct exporters are large and medium sized firms, and most indirect-exporting firms are medium and small sized ones.

In the sample, about 65% of all the observations are fully owned by locals.
Introduction

- Most of the direct exporters are large and medium sized firms, and most indirect-exporting firms are medium and small sized ones.
- In the sample, about 65% of all the observations are fully owned by locals.
- The proportion of firm’s with any foreign ownership tend to be larger for direct exporters (37%) than for indirect exporters (26%).
Table 3. Distribution of firms by industry for direct and indirect exporter

<table>
<thead>
<tr>
<th>Industry</th>
<th>Indirect Exporters (%)</th>
<th>Direct Exporters (%)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textiles</td>
<td>1.69</td>
<td>8.65</td>
<td>10.34</td>
</tr>
<tr>
<td>Leather</td>
<td>0.26</td>
<td>1.9</td>
<td>2.16</td>
</tr>
<tr>
<td>Garments</td>
<td>4.28</td>
<td>8.52</td>
<td>12.81</td>
</tr>
<tr>
<td>Agro-industry</td>
<td>1.17</td>
<td>6.14</td>
<td>7.31</td>
</tr>
<tr>
<td>Food</td>
<td>3.63</td>
<td>10</td>
<td>13.63</td>
</tr>
<tr>
<td>Beverages</td>
<td>0.04</td>
<td>0.26</td>
<td>0.3</td>
</tr>
<tr>
<td>Metals and machinery</td>
<td>2.16</td>
<td>9.52</td>
<td>11.68</td>
</tr>
<tr>
<td>Electronics</td>
<td>0.22</td>
<td>1.04</td>
<td>1.25</td>
</tr>
<tr>
<td>Chemicals and pharmac.</td>
<td>1.73</td>
<td>8.05</td>
<td>9.78</td>
</tr>
<tr>
<td>Wood and furniture</td>
<td>0.78</td>
<td>4.24</td>
<td>5.02</td>
</tr>
<tr>
<td>Non-metal. and plastic</td>
<td>1.13</td>
<td>5.45</td>
<td>6.58</td>
</tr>
<tr>
<td>Paper</td>
<td>0.04</td>
<td>1.34</td>
<td>1.38</td>
</tr>
<tr>
<td>Other manufacturing</td>
<td>4.63</td>
<td>13.11</td>
<td>17.74</td>
</tr>
<tr>
<td>Total</td>
<td>21.77</td>
<td>78.23</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 4. Distribution of direct and indirect exporters by emp. size

<table>
<thead>
<tr>
<th>Employment Size</th>
<th>In percent</th>
<th>small (< 20)</th>
<th>medium (20-99)</th>
<th>large (100+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indirect Exporters</td>
<td>38.02</td>
<td>41.15</td>
<td>20.83</td>
<td></td>
</tr>
<tr>
<td>Direct Exporters</td>
<td>17.19</td>
<td>35.29</td>
<td>47.52</td>
<td></td>
</tr>
</tbody>
</table>
Table 5. Level of foreign ownership distribution

<table>
<thead>
<tr>
<th>Nature of Ownership</th>
<th>Indirect Exporters (%)</th>
<th>Direct Exporters (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non foreign ownership</td>
<td>73.45</td>
<td>62.47</td>
</tr>
<tr>
<td>Minority foreign ownership</td>
<td>4.99</td>
<td>5.72</td>
</tr>
<tr>
<td>Half foreign ownership</td>
<td>1</td>
<td>1.72</td>
</tr>
<tr>
<td>Majority foreign ownership</td>
<td>5.39</td>
<td>8.33</td>
</tr>
<tr>
<td>Full foreign ownership</td>
<td>15.17</td>
<td>21.77</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 6: Descriptive statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Std. Dev</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>log(Export$^{id}_{i,j,k}$)</td>
<td>469</td>
<td>6.67e+10</td>
<td>4.02e+11</td>
<td>150 6.</td>
<td>49e+12</td>
</tr>
<tr>
<td>Efficiencyi,j,k</td>
<td>469</td>
<td>0.28</td>
<td>0.35</td>
<td>1.05e-06</td>
<td>1</td>
</tr>
<tr>
<td>Xefficiency$^{id}_{j,k}$</td>
<td>461</td>
<td>0.33</td>
<td>0.23</td>
<td>0.05</td>
<td>1</td>
</tr>
<tr>
<td>Competitionj,k</td>
<td>368</td>
<td>3.9904891</td>
<td>2.8489286</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>mtaxj,k</td>
<td>465</td>
<td>1.4086022</td>
<td>1.1539527</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Salesi,j,k</td>
<td>431</td>
<td>1.834E+09</td>
<td>9.807E+09</td>
<td>0</td>
<td>1E+11</td>
</tr>
<tr>
<td>Owneri,j,k</td>
<td>505</td>
<td>20.777558</td>
<td>38.056674</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Websitei,j,k</td>
<td>497</td>
<td>0.2796781</td>
<td>0.4492932</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>GDPk</td>
<td>497</td>
<td>2.784E+10</td>
<td>5.38E+10</td>
<td>212034806</td>
<td>1.8E+11</td>
</tr>
<tr>
<td>Agei,j,k</td>
<td>501</td>
<td>18.914172</td>
<td>17.30834</td>
<td>0</td>
<td>95</td>
</tr>
<tr>
<td>Crediti,j,k</td>
<td>499</td>
<td>0.3707415</td>
<td>0.483488</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 6 (contd.): Descriptive statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Std. Dev</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log(Export_{i,j,k}^d))</td>
<td>1649</td>
<td>1.13e+11</td>
<td>7.01e+11</td>
<td>434</td>
<td>1.68e+13</td>
</tr>
<tr>
<td>(Efficiency_{i,j,k})</td>
<td>1626</td>
<td>0.32</td>
<td>0.35</td>
<td>2.62e-07</td>
<td>1</td>
</tr>
<tr>
<td>(Xefficiency_{j,k}^d)</td>
<td>1349</td>
<td>0.32</td>
<td>0.22</td>
<td>0.045</td>
<td>1</td>
</tr>
<tr>
<td>(Competition_{j,k})</td>
<td>1340</td>
<td>5.18694</td>
<td>4.05382</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>(mtax_{j,k})</td>
<td>1813</td>
<td>1.52951</td>
<td>1.11189</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>(Sales_{i,j,k})</td>
<td>1560</td>
<td>2.1E+09</td>
<td>1.1E+10</td>
<td>0</td>
<td>1.38E+11</td>
</tr>
<tr>
<td>(Owner_{i,j,k})</td>
<td>1807</td>
<td>30.4212</td>
<td>42.6116</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>(Website_{i,j,k})</td>
<td>1790</td>
<td>0.51397</td>
<td>0.49994</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(GDP_k)</td>
<td>1797</td>
<td>4.1E+10</td>
<td>6.3E+10</td>
<td>212034806</td>
<td>1.78E+11</td>
</tr>
<tr>
<td>(Age_{i,j,k})</td>
<td>1784</td>
<td>21.2321</td>
<td>18.1658</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>(Credit_{i,j,k})</td>
<td>1704</td>
<td>0.60035</td>
<td>0.48997</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Variable</td>
<td>(i)</td>
<td>(ii)</td>
<td>(iii)</td>
<td>(iv)</td>
<td>(v)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Eff. (i,j,k)</td>
<td>0.766***</td>
<td>0.806***</td>
<td>0.815***</td>
<td>0.677***</td>
<td>0.667***</td>
</tr>
<tr>
<td></td>
<td>(0.0496)</td>
<td>(0.0527)</td>
<td>(0.0492)</td>
<td>(0.0512)</td>
<td>(0.0592)</td>
</tr>
<tr>
<td>Ceffi(id)_{j,k}</td>
<td>-0.585***</td>
<td>-0.612***</td>
<td>-0.578***</td>
<td>-0.532***</td>
<td>-0.456***</td>
</tr>
<tr>
<td></td>
<td>(0.0495)</td>
<td>(0.0518)</td>
<td>(0.0567)</td>
<td>(0.0508)</td>
<td>(0.0594)</td>
</tr>
<tr>
<td>Compt.(j,k)</td>
<td>-0.0600***</td>
<td>-0.0611***</td>
<td>-0.0654***</td>
<td>-0.0611***</td>
<td>-0.0654***</td>
</tr>
<tr>
<td></td>
<td>(0.0201)</td>
<td>(0.0230)</td>
<td>(0.0273)</td>
<td>(0.0230)</td>
<td>(0.0273)</td>
</tr>
<tr>
<td>mtax(j,k)</td>
<td>-0.613**</td>
<td>-0.583***</td>
<td>-0.475**</td>
<td>-0.490*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.249)</td>
<td>(0.223)</td>
<td>(0.224)</td>
<td>(0.260)</td>
<td></td>
</tr>
<tr>
<td>Sales(i,j,k)</td>
<td></td>
<td></td>
<td></td>
<td>2.83e-11***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(8.78e-12)</td>
<td></td>
</tr>
<tr>
<td>Owner(i,j,k)</td>
<td></td>
<td>0.00934***</td>
<td></td>
<td>0.0107***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00151)</td>
<td></td>
<td>(0.00158)</td>
<td></td>
</tr>
<tr>
<td>Website(i,j,k)</td>
<td></td>
<td>0.496***</td>
<td></td>
<td>0.651***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.143)</td>
<td></td>
<td>(0.150)</td>
<td></td>
</tr>
<tr>
<td>Age(i,j,k)</td>
<td>0.0118***</td>
<td></td>
<td>0.0136***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00392)</td>
<td></td>
<td>(0.00404)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit(i,j,k)</td>
<td></td>
<td>0.356**</td>
<td></td>
<td>0.544***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.151)</td>
<td></td>
<td>(0.158)</td>
<td></td>
</tr>
<tr>
<td>LGDP(_k)</td>
<td></td>
<td>-0.347</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.409)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mach.(i,j,k)</td>
<td>3.89e-11***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\text{\(i\)}\) is the first theoretical framework, \(\text{\(ii\)}\) is the second theoretical framework, \(\text{\(iii\)}\) is the empirical results, \(\text{\(iv\)}\) is the theoretical and empirical results, and \(\text{\(v\)}\) is the empirical results with different control variables.
<table>
<thead>
<tr>
<th></th>
<th>(vi)</th>
<th>(vii)</th>
<th>(viii)</th>
<th>(ix)</th>
<th>(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Eff_{i,j,k})</td>
<td>0.741***</td>
<td>0.574***</td>
<td>0.628***</td>
<td>0.533***</td>
<td>0.568***</td>
</tr>
<tr>
<td></td>
<td>(0.114)</td>
<td>(0.1000)</td>
<td>(0.0969)</td>
<td>(0.0980)</td>
<td>(0.107)</td>
</tr>
<tr>
<td>(Ceff_{id,j,k})</td>
<td>-0.956***</td>
<td>-0.649***</td>
<td>-0.640***</td>
<td>-0.325*</td>
<td>-0.392*</td>
</tr>
<tr>
<td></td>
<td>(0.189)</td>
<td>(0.182)</td>
<td>(0.213)</td>
<td>(0.174)</td>
<td>(0.205)</td>
</tr>
<tr>
<td>(Compt_{j,k})</td>
<td>-0.701***</td>
<td>-0.772***</td>
<td>-0.402***</td>
<td>-0.403***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0832)</td>
<td>(0.0984)</td>
<td>(0.0611)</td>
<td>(0.0771)</td>
<td></td>
</tr>
<tr>
<td>(mtax_{j,k})</td>
<td>0.380***</td>
<td>0.486***</td>
<td>0.525***</td>
<td>0.584***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.145)</td>
<td>(0.138)</td>
<td>(0.143)</td>
<td>(0.147)</td>
<td></td>
</tr>
<tr>
<td>(Sales_{i,j,k})</td>
<td></td>
<td></td>
<td></td>
<td>1.1e-10***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2.03e-11)</td>
<td></td>
</tr>
<tr>
<td>(Owner_{i,j,k})</td>
<td>0.00983**</td>
<td>0.011**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00484)</td>
<td>(0.0051)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Website_{i,j,k})</td>
<td>0.0723</td>
<td>-0.0389</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.411)</td>
<td>(0.432)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Credit_{i,j,k})</td>
<td>-1.036***</td>
<td>-0.94**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.351)</td>
<td>(0.376)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(LGDP_k)</td>
<td>-0.459***</td>
<td>-0.409***</td>
<td>-0.43***</td>
<td>-0.43***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0992)</td>
<td>(0.110)</td>
<td>(0.111)</td>
<td>(0.115)</td>
<td></td>
</tr>
<tr>
<td>(Mach_{i,j,k})</td>
<td></td>
<td></td>
<td></td>
<td>1.9e-10**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(6.1e-11)</td>
<td></td>
</tr>
</tbody>
</table>
Table 9. Estimation results for median tax burden on direct exp.

<table>
<thead>
<tr>
<th></th>
<th>(1) OLS</th>
<th>(2) OLS</th>
<th>(3) Order Logit</th>
<th>(4) Order Logit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AvEff (d_{j,k})</td>
<td>-0.266***</td>
<td>-0.312***</td>
<td>-0.359**</td>
<td>-0.495***</td>
</tr>
<tr>
<td></td>
<td>(0.0784)</td>
<td>(0.0804)</td>
<td>(0.120)</td>
<td>(0.142)</td>
</tr>
<tr>
<td>Interact. (j,k)</td>
<td>0.0268**</td>
<td>0.0325***</td>
<td>0.0344**</td>
<td>0.0491***</td>
</tr>
<tr>
<td></td>
<td>(0.0105)</td>
<td>(0.0112)</td>
<td>(0.0148)</td>
<td>(0.0184)</td>
</tr>
<tr>
<td>Compt. (j,k)</td>
<td>0.0727***</td>
<td>0.0630**</td>
<td>0.116***</td>
<td>0.107***</td>
</tr>
<tr>
<td></td>
<td>(0.0235)</td>
<td>(0.0249)</td>
<td>(0.0355)</td>
<td>(0.0412)</td>
</tr>
<tr>
<td>AvSales (j,k)</td>
<td>-3.66e-13</td>
<td>-1.47e-12</td>
<td>-3.14e-12</td>
<td>-4.52e-12</td>
</tr>
<tr>
<td></td>
<td>(4.23e-12)</td>
<td>(4.22e-12)</td>
<td>(5.87e-12)</td>
<td>(6.37e-12)</td>
</tr>
<tr>
<td>Mdlabor (j,k)</td>
<td>0.332***</td>
<td></td>
<td></td>
<td>0.619***</td>
</tr>
<tr>
<td></td>
<td>(0.0745)</td>
<td></td>
<td></td>
<td>(0.140)</td>
</tr>
<tr>
<td>Mdskill (j,k)</td>
<td>-0.0424</td>
<td></td>
<td>-0.0989</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0602)</td>
<td></td>
<td></td>
<td>(0.106)</td>
</tr>
<tr>
<td>Avreg.</td>
<td>0.0167**</td>
<td></td>
<td>0.0308**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00591)</td>
<td></td>
<td></td>
<td>(0.0119)</td>
</tr>
<tr>
<td>Lpercapita</td>
<td>-0.586***</td>
<td>-0.585***</td>
<td>-0.917***</td>
<td>-1.017***</td>
</tr>
<tr>
<td></td>
<td>(0.0544)</td>
<td>(0.0561)</td>
<td>(0.106)</td>
<td>(0.127)</td>
</tr>
<tr>
<td>Constant</td>
<td>5.139***</td>
<td>4.688***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.379)</td>
<td>(0.405)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj. R(^2)</td>
<td>0.24</td>
<td>0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>297</td>
<td>287</td>
<td>297</td>
<td>297</td>
</tr>
</tbody>
</table>