

Poverty and Inequality Dynamics.

Ira N. Gang, Rutgers University
Ksenia Gatskova, IOS-Regensburg
John Landon-Lane, Rutgers University
Myeong-Su Yun, Tulane University

Paper prepared for the UNU-WIDER Conference: Inequality – Measurement, Trends, Impacts, and Policies.

Helsinki, Finland, Sept. 5-6, 2014.

Introduction and Overview

- This paper is our effort to employ rigorous empirical methods to the study of poverty dynamics.
 - Related to our earlier work on mobility and informal sector behavior
- We use a simple model of income to measure the movements into and out of poverty.
- Using this model we can
 - Predict changes to income distribution over the long run
 - Measure the size of the economy below the poverty line currently and predict its size over time
 - Measure the probability that any entity (individual, household) will fall into poverty in both short and long run.
 - Endogenously determine the size of the "at risk" or vulnerable population.

Introduction and Overview

- We apply our methodology to household level data from Tajikistan over the years 2007 to 2011.
 - We are able to observe two distinct periods
 - 1. A period of great stress (the global financial crisis)
 - 2. A period of recovery from a recession
- We construct a formal measure of vulnerability that is consistent with standard mobility axioms
- We show that the definition of those vulnerable to poverty is not fixed over time and varies substantially between "good" and "bad" times

A model of income dynamics

- We use a discrete state first order Markov model of income
- That is
 - We divide the income distribution into a finite number of nonoverlapping intervals that cover the whole income distribution
 - Let π_t be the probability vector such that π_{jt} is the probability that a household has income that is contained in income classification j.
 - We assume that

$$\Pr\left(\pi_{t} \mid \pi_{t-1}, \pi_{t-2}, \ldots\right) = \Pr\left(\pi_{t} \mid \pi_{t-1}\right)$$

- That is, this periods income distribution is a function of last periods income distribution only.
- Note: More complicated structure can be accommodated in our framework as higher ordered Markov models can be reformulated as a first order model given the appropriate transformation of the state space.

A model of income dynamics

The Markov transition probability matrix P is a matrix

$$P = [p_{ij}]$$

- P_{ij} is the probability that a household moves from income class I in period t-1 to income class j in period t.
- We define the income classes in such a way as to model poverty and to endogenously identify the vulnerable part of the population.

Background

- The use of Markovian models to model income mobility has a long history
 - Champernowne (53), Prais (53)
- The use of the Markov transition matrix to measure mobility also has a long history
 - Shorrocks (78)
 - Geweke, Marshall and Zarkin (86)
 - Gang, Landon-Lane and Yun (04)
- We follow this literature in that our vulnerability measure is based on individual elements of P

Background

- All of our functions of interest are linear and non-linear functions of the elements of π_t and P.
- These include
 - Limiting income distribution, $\overline{\pi} = \lim_{t \to \infty} \pi_t$
 - Measures of mobility M(P)
 - Measures of vulnerability V(P)

An illustrative example

- Suppose we break the income distribution up into 3 classifications
 - Class 1: below the poverty line
 - Class 2: an between the poverty line and twice the poverty line
 - Class 3: an income above twice the poverty line
- Then $\pi_t = \begin{bmatrix} \pi_{1t} \\ \pi_{2t} \\ \pi_{3t} \end{bmatrix}$ represents the state of the world in

period t.

• π_{1t} is the proportion of the population below the poverty line

An illustrative example

The Markov transition matrix is

$$P = \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix}$$

• Here, e.g., p_{21} is the probability that a household that was in Class 2 in period t falls back to Class 1 in period t+1

An illustrative example

 Our measure of vulnerability is a function of the probabilities in the first column of P.

$$P = \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ \mathbf{p_{21}} & p_{22} & p_{23} \\ \mathbf{p_{31}} & p_{32} & p_{33} \end{bmatrix}$$

• We define
$$V(\mathbf{P}) = \frac{\pi_{2t} p_{21} + \pi_{3t} p_{31}}{\pi_{2t} + \pi_{3t}}$$

as our measure of overall vulnerability.

An illustrative example

- The measure given above is a 1-period measure.
- We can also define multiple period measures
- Under the assumption of stability we know from the Markov model that

$$\pi'_{t+k} = \pi'_t P^k$$

Let

$$P^{k} = \begin{bmatrix} p_{11}^{k} & p_{12}^{k} & p_{13}^{k} \\ p_{21}^{k} & p_{22}^{k} & p_{23}^{k} \\ p_{31}^{k} & p_{32}^{k} & p_{33}^{k} \end{bmatrix}$$

An illustrative example

Then the k-period vulnerability measure is

$$V(\mathbf{P}) = \frac{\pi_{2t} p_{21}^k + \pi_{3t} p_{31}^k}{\pi_{2t} + \pi_{3t}}$$

 This is the unconditional probability that a household will fall below the poverty line after k periods.

Estimation and Inference

- In this paper we use Bayesian methods to
 - Estimate underlying parameters of the model (e.g. *P*)
 - Estimate functions of interest ($\overline{\pi}$, $V^{k}(P)$)
 - Produce confidence intervals and do statistical tests
- Estimation of the discrete state first order Markov model is simple by Bayesian standards.
- No MCMC needed. The posterior distribution is known i.i.d. draws can be efficiently made from it.
- The priors are designed to reflect our prior uncertainty about the underlying parameters.
- Full details of the design and prior specification can be found in the paper.

Covariates

- While we do not use covariates in this paper a recent paper by Gang, Landon-Lane, and Yun (2014) shows how the marginal effects of covariates on functions of *P* (e.g. mobility and vulnerability measures) can be estimated.
- Thus it is straightforward to add covariates to our analysis.

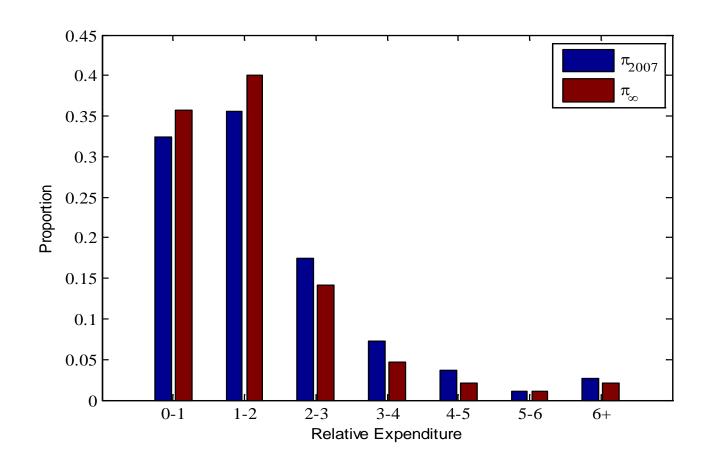
An application to Tajikistan

- In this paper we use a panel of households from the Tajikistan LSMS survey.
- We have a balanced panel for the year 2007, 2009, and 2011.
- One nice feature (for us at least) is that the global financial crisis hit in the midst of the first transition (2007-2009).
- Thus the first transition is one of crisis. A priori one would expect households to be more vulnerable to poverty during this period.
- The second transition from 2009-2011 was one of recovery.
- So we have two very distinct periods to study.

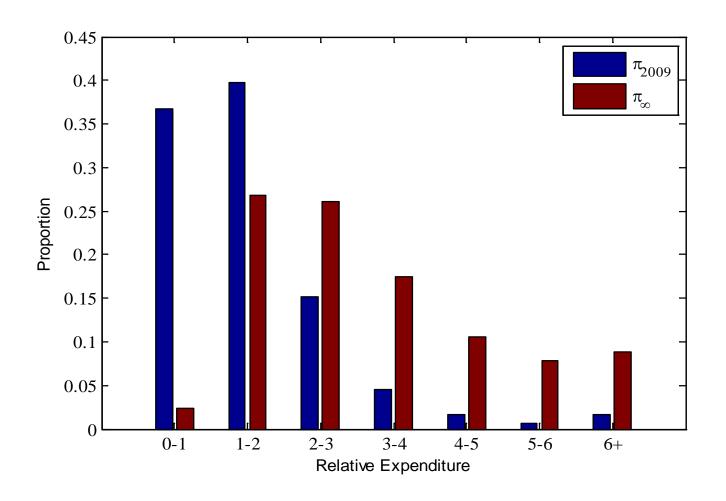
Background on Tajikistan

- Poor former Soviet republic who gained independence in 1991
- Between 2001-2010 GDP grew on average 8.8%.
- Poverty by headcount ratio was 46.7% in 2009.
- Remittance dependent economy remittances account for 52% of GDP in 2009
- Large differences between urban and rural households, educated and non-educated households and households with and without migrants

Our Study


- We use household level income and expenditure data
- Total income includes
 - Total receipts from employment
 - Net transfers from govt
 - Remittances
 - The market value of assets consumed
 - The market value for good and services when payment for labor services was in kind
- We use per person household income relative to per person poverty line

Our Study


- We use World Bank 2007 study on poverty line and convert to current units for 2009 and 2011.
- Poverty line was
 - 139 Sonomi (pp) in 2007
 - 169 Sonomi (pp) in 2009
 - 214 Sonomi (pp) in 2011
- We divide the relative income variable into 10 classes

1	2	3	4	5	6	7	8	9	10	11
			1.4- 1.6			2-3	3-4	4-5	5-6	6+

First Transition 2007-2009

Second Transition: 2009-2011

Tajikistan

- 2007-2009 was a period of retrenchment
- 2009-2011 was a period of recovery.
- If 2009-2011 process was to continue then we would see a massive shrinking of proportion of population in poverty

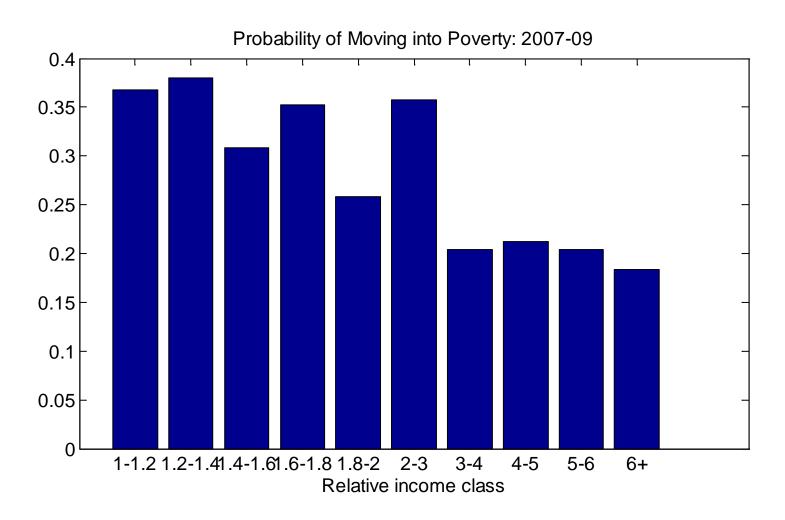
Mobility Measures

 We report Shorrocks' (1978) overall mobility measure and its decomposition into upward and downward components (Gang, Landon-Lane and Yun (2004))

Sample	$M_s(\mathbf{P})$	$M_{_{\mathit{U}}}(\mathbf{P})$	$M_{\scriptscriptstyle D}(\mathbf{P})$
07-09	0.966	0.289	0.677
	(0.010)	(0.013)	(0.015)
09-11	1.002	0.636	0.366
	(0.012)	(0.014)	(0.016)

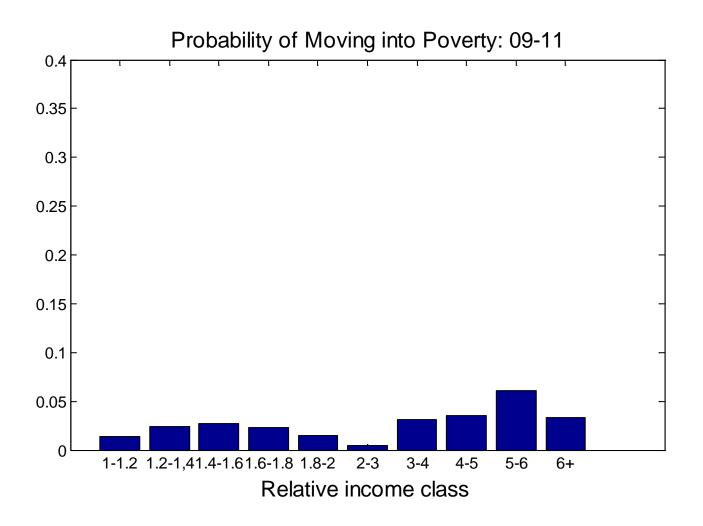
Vulnerability Measures

Sample	$V^{\scriptscriptstyle 1}(\mathbf{P})$	$V^{2}(\mathbf{P})$	$V^{\mathfrak{s}}ig(\mathbf{P}ig)$
07-09	0.314 (0.015)	0.348 (0.014)	0.357 (0.015)
09-11	0.019 (0.004)	0.023 (0.007)	0.024 (0.008)


Vulnerability Measures

- The transition during the recession shows significantly more vulnerability than the recovery transition
- Most of the vulnerability is in the first period.
- We will focus on the 1-period vulnerability going forward

1-period vulnerability by covariate 2007-2009


Covariate	$V^{\scriptscriptstyle 1}(\mathbf{P})$	Covariate	$V^{\scriptscriptstyle 1}ig(\mathbf{P}ig)$
Urban	0.190 (0.020)	Remittances	0.204 (0.029)
Rural	0.351 (0.019)	No-Remittances	0.314 (0.016)
Informal	0.241 (0.018)	> Secondary	0.245 (0.019)
No-informal	0.360 (0.023)	Secondary or lower	0.336 (0.020)

Determining the vulnerable population

Determining the Vulnerable Population 09-11

Determining the Vulnerable Population

- For 07-09 transition then relative incomes up to 3 times the poverty line have more than 0.3 probability of falling into poverty.
- For 09-11 transition no income class has a probability of falling into poverty greater than 0.3.

Summary

- We have used existing methodology to show how poverty dynamics can be formally measured.
- It is simple to use
- Covariates can be included in the analysis
- The threshold for the vulnerable population can be endogenously determined.
- We applied the method to Tajikistan