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Abstract

In this paper, we provide intuitive justifications of normative restrictions based

on the signs of fourth-order derivatives of utilities in the context of multidimen-

sional welfare analysis. For this, we develop a new notion of welfare shock sharing.

This allows us to derive new characterizations for symmetric and asymmetric con-

ditions on the signs of fourth-order derivatives of utility functions. Then, we use

these restrictions to derive new necessary and suffi cient stochastic dominance cri-

teria for multidimensional welfare comparisons, as well as equivalences in terms

of multidimensional poverty measures.
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1 Introduction

In this article, we deal with comparisons of inequality and social welfare across situations

that can be described with several well-being attributes for each individual. For exam-

ple, income, health and education are typically invoked as three relevant dimensions of

individual well-being.

Multidimensional stochastic dominance criteria for social welfare and inequality

analyses were put forward by Kolm (1977) and Atkinson and Bourguignon (1982). Their

criteria were based on utility functions constrained by the signs of their partial deriva-

tives up to the fourth order. However, the conditions involving fourth-order derivatives

have not been recognized as being easy to interpret by most economists, as stated again

in Atkinson (2003).

In typical stochastic dominance approaches of multidimensional welfare analysis,

marginal utility functions, with respect to each attribute, are assumed to be identical

across agents by invoking ‘anonymity’axioms1. They are also generally supposed to

be non-negative and non-increasing. However, these assumptions alone do not allow

researchers to generate stochastic dominance criteria that would have suffi ciently high

discriminatory power to make them effi cient guides for empirical economic policy. This is

why economists have undertaken to reinforce these decision rules through incorporating

hypotheses on signs of higher derivatives of utility functions. However, so far, it is fair

to say that only criteria based on partial derivatives up to the third order, at most, are

typically used2. This is because only limited normative justifications have been found

to justify to push the analysis at higher orders. Despite this, Duclos, Sahn and Younger

(2011) is an example of the use of Atkinson and Bourguignon conditions including fourth-

order derivatives in an empirical context3, which suggests that improved discriminatory

1In some cases, this can be justified by controlling explicitly for some differences in needs, as in

Atkinson and Bourguignon (1987) for example.
2For example, Bazen and Moyes (2003), Gravel and Moyes (2012), Muller and Trannoy (2011, 2012).
3Some authors (e.g., Gravel and Mulhopadhay, 2009) propose empirical stochastic dominance ap-
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power obtained this way can be attractive for empirical researchers. This induces us to

pursue this research line, which is the first aim of this paper.

More generally, we investigate how to extend the expression of social solidarity

in social welfare analysis, which is typically done through normative conditions on

utility functions. For this, diverse axioms of monotonicity, transfers and compensa-

tion/substitution have already been well explored. To go further, we propose to in-

troduce intuitions about social solidarity, which we state in terms of social sharing of

individual shocks.

Social sharing notions for multidimensional welfare problems are not just motivated

by climbing a ladder of conditions on utility derivatives. The variety of welfare shocks

suffered by most households calls for a general setting that clearly specifies how social

solidarities operate across the diverse dimensions of individual welfare. Shocks may

affect health, income, physical safety, employment, family issues, environment, prices,

etc. Considering heterogeneous shocks particularly relevant in some poor contexts, in

which it has been found that many households cannot cope on their own with all these

shocks4. In that case, traditional or modern institutions of social solidarity that can

deal with the whole span of shocks are required. Public systems of social securities on

the one hand, and families on the other hand, are examples of such institutions. These

institutions assist households by sharing shocks, whether they are random or not, either

through ex-post compensation devices such as cash transfers, or through ex-ante insur-

ance or protection policies. Modern social security systems are becoming increasingly

complex and sophisticated, dealing simultaneously with many different types of risks,

handicaps, inequalities and other shocks, while this was always so for traditional sol-

plications based on even higher derivatives orders, for example by multiplying poverty headcounts or

poverty gap indices at individual level. This is also typically the case in the one-dimensional literature

using an infinite sequence of derivative conditions leading to stochastic dominance expressions (Kolm,

1976a,b, Fishburn and Willig, 1984). Again, normative justifications would be needed in order to better

settle these practices.
4For example in Ethiopia in Kebede and Muller (2013).
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idarity mechanisms. Then, investigating the extent to which multidimensional shocks

should be socially shared, and how to account for them in welfare analysis, appears as

relevant and even increasingly so.

In this paper, we discuss and develop new normative social notions of ‘welfare shock

sharing’. These notions allow us to justify separately normative conditions in terms of

variations in utilities faced to random or non-random shocks. We translate these condi-

tions in terms of normatively meaningful signs of partial derivatives of utility functions

(from the first to the fourth order).We also review other ways of justifying these signs

conditions.

In a second stage, we consider the sets of utility functions that can be defined by

using signs of partial derivatives up to the fourth-order. For each of these sets, we

provide necessary and suffi cient stochastic dominance theorems that allow the decision

maker to compare multidimensional social welfare between two empirical situations. We

also report equivalent results in the form of generalized poverty gap conditions.

The next section presents our setting. Section 3 discusses normative justifications

based on the notion of welfare shock sharing. Section 4 reports our stochastic dominance

results. Section 5 proposes an empirical application. Finally, we conclude in Section 6.

Most of the proofs are in the appendix.
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2 The Setting

We focus on the bivariate case, while most of what we shall discuss is valid for higher

dimensions too. A typical example is the case where the first argument of the utility

function is income and the second one is health. We consider a bivariate distribution of

a random vector (x̃, ỹ) over a set of random variable S̃. We assume that there random

variable take values x and y on the rectangle [0, a1] × [0, a2] = A1×A2, where a1 and a2

are in R̄+. F̃ (x̃, ỹ) denotes the corresponding joint cumulative distribution function over

the population of interest. The realisation of x̃ (respectively x) is denoted x (respectively

y). Their joint cdf for a given (x̃, ỹ) is denoted F (x, y) and is assumed to be continuous,

while F1(x1) and F2(x2) denote the respective marginal cdfs of x and y.

Let WF̃ be an additively separable social welfare function, associated with cdf F̃

WF̃ :=

∫
S̃

Ũ(x̃, ỹ)dF̃ (x̃, ỹ),

where Ũ is a utility function from S̃ to R. Often, in the social welfare literature, Ũ

is replaced by a criterion of expected utility, which givesWF̃ :=
∫

A1×A2
EU(x̃, ỹ)dF̃ (x̃, ỹ),

where U is a cardinal von Neuman-Morgenstern utility function. When there is no

randomness, one obtains WF :=
∫

A1×A2
U(x, y)dF (x, y), and this will be our starting

point in the discussion. We shall examine how to consider social shocks, including some

random shocks, starting from such situation.

We assume all the partial derivability properties needed to express our results. More-

over, in all the paper, we assume that all the considered integrals are bounded to avoid

absurdities.5

Let4WU := WF−WF ∗ be the change in social welfare between any two distributions

5If a1 = +∞ or a2 = +∞, then some integrals may not be defined for certain theoretical distribu-

tions,even with non random variables x1 and x2 such that F (x1, x2) has heavy tails. This may also be

the case for some integrals of some partial derivatives of utility arising in expansions. However, these

cases are of little empirical relevance.
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F and F ∗. We obtain 4WU =
∫

A1×A2
U(x, y)d4F (x, y), where 4F denotes F − F ∗.

Social welfare dominance is defined to correspond to the unanimity over a given set U

of utility functions U .

Definition 1 F dominates F ∗ for a family U of utility functions if and only if4WU ≥ 0

for all utility functions U in U . This is denoted FDU F ∗.

To be more specific about such dominance relationships, we need to define relevant

sets U of utility functions. We proceed to do so in the next sub-sections, starting with

some useful sets of functions generalising usual concavity notions.

2.1 A few definitions

We first introduce a few definitions for some generalised concave functions of (x, y) that

we shall use later. Denuit, Lefèvre and Mesfioui (1999), Denuit and Mesfioui (2010) and

Denuit, Eeckhoudt, Tsetling and Walker (2010) provide generator functions for these

classes, which we use to derive stochastic dominance conditions in Section 4.

Definition 2 Consider the functions of (x, y) from A1×A2 to R. The (s1, s2)−increasing

concave ((s1, s2)− icv) functions are all appropriately derivable functions g such that

(−1)k1+k2+1 ∂k1+k2

∂xk1∂yk2
g ≥ 0,

where ki = 0, .., si; i = 1, 2; s1and s2 are two non-negative integers and 1 ≤ k1 + k2.

The corresponding classes of functions are denoted U(s1,s2)−icv.

The s−increasing directionally concave functions (s-idircv) are all functions g such

that

(−1)k1+k2+1 ∂k1+k2

∂xk1∂yk2
g ≥ 0,

where k1 and k2 are two non-negative integers and 1 ≤ k1 + k2 ≤ s, where s is

an integer larger than or equal to 2. The corresponding class of functions is denoted

Us−idircv.

Let Rs = {(r1, r2) ∈ N2| 1 ≤ r1 + r2 = s}, which is used in the next theorem.
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Theorem 1 Let s be an integer greater of equal to n. Then,

Us−idircv =
⋂

(r1,r2)∈Rs

U(r1,r2)−icv.

IIUThe s-idircv classes embody symmetrical assumptions that make them particu-

larly liable to be characterised by asymptotic developments through symmetric deriva-

tions across all variables. In turn, these developments can be used to identify generator

functions, which can then be mobilised to obtain necessary and suffi cient conditions of

stochastic dominance results.

2.2 The utility sets of interest

From now, in order to alleviate notations, we denote partial derivatives by using indices

of attributes (1 and 2), repeated as many times as there is a derivation with respect to

the attribute. For example, U1122 is ∂4

∂x2∂y2
U .

Conditions on signs of partial derivatives were introduced progressively in the lit-

erature. For example, Levy and Paroush (1974) were the first ones, to our knowledge,

to propose to use the condition U12 ≤ 0. Atkinson and Bourguignon (1982) proposed

various classes of utility functions. Their largest class is defined by functions satisfying

U1, U2 ≥ 0, U12 ≤ 0, while their smallest class is defined by the same restrictions to

which are added U11 ≤ 0, U22 ≤ 0, U112 ≥ 0, U221 ≥ 0, U1122 ≤ 0. Other authors propose

classes with intermediate sets of restrictions.6

In order to increase the power of the stochastic dominance tests, one may want to

assume as many restrictions as possible. Let U be the class of increasing utility functions

that satisfy the following signs for the partial derivatives.

6Moyes (1999), Bazen and Moyes (2003, Gravel and Moyes (2012), Muller and Trannoy (2011, 2012).
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U = {U1, U2 ≥ 0, U11 ≤ 0, U22 ≤ 0, U12 ≤ 0,

U111 ≥ 0, U222 ≥ 0, U112 ≥ 0, U221 ≥ 0, (1)

U1111 ≤ 0, U2222 ≤ 0, U1122 ≤ 0, U1112 ≤ 0, U1222 ≤ 0}. (2)

This class involves a complete set of sign restrictions on partial derivatives up to the

fourth order. Other conditions with opposite signs could also be considered, although

they would yield rather counter-intuitive meanings (e.g., risk-loving or inequality-loving

decision-maker with U11 ≥ 0). We therefore only consider the most relevant signs for

our analyses.

We now comment on these restrictions. The non-negativity of the first-order deriv-

atives means that both attributes positively contribute to utility, or at least are not

noxious to it. The non-positivity of the two direct second-order derivatives may be seen

as expressing inequality aversion in social welfare settings. They correspond to the con-

cavity of the utility in the directions of each attributes. However, they do not imply the

global concavity of the utility in general. Besides, it is unclear whether global concavity

would carry some relevant normative meaning.

IIUThe hypotheses U12 ≤ 0, U112 ≥ 0 and U122 ≥ 0 can be justified as in Muller

and Trannoy (2011, 2012) by invoking normative compensation arguments. Rather than

treating all attributes as symmetrical, one of them is assumed to serve as a compensating

variable to redress inequality with respect to certain needs. In that case, the first

argument (e.g., income) is assumed to be useful for compensating possible destitution

in the second argument (e.g., health). The more destitute in health an individual is, the

higher the justification for compensating income transfers are. Moreover, with U112 ≥ 0,

such justification is all the more vindicated that potential transfer beneficiaries are poor.

There are other possible justifications of these hypotheses. For example, U12 ≤ 0 can be

seen as embodying aversion for correlations between attributes, as in Tsui (1999). So,

far justifications of signs of the fourth-order derivatives are missing in the literature.
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Class U can be seen as corresponding to some ‘maximum requirement’in terms of

the signs of the partials since its definition cumulates a complete set of restrictions on

signs up to the fourth order. However, other utility classes could be considered that

would involve fourth-order partial derivatives, even though not all of the terms in the

definition of U . For example, the hypotheses in Atkinson and Bourguignon correspond

to the class:

U−− = {U1, U2 ≥ 0, U11, U22, U12 ≤ 0, U121, U212 ≥ 0, U1122 ≤ 0}, which may also be

described as Class (2, 2)− icv.

We also consider the following classes that involve fourth-order derivatives.

Class (3, 1)− icv corresponds to: U1, U2 ≥ 0; U11, U12 ≤ 0; U112, U111 ≥ 0; U1112 ≤ 0,

which have never been considered jointly in the literature.

Class (4, 0) − icv corresponds to: U1 ≥ 0; U11 ≤ 0; U111 ≥ 0; U1111 ≤ 0 and no

condition on the other attribute. Classes (1, 3) − icv and (0, 4) − icv can be easily

obtained by symmetry.

Our class U of main interest is also Class 4-idircv. It imposes symmetric restrictions

on marginal variations in all directions. In order to justify normatively all these restric-

tions, we introduce new normative axioms in the next section, based on the new notion

of ‘welfare shock sharing’.

3 Normative Justifications

3.1 Welfare shock sharing

There are many ways of incorporating notions of shocks into welfare contexts. A few

ones that come to mind are the specifications of: compensation for observed damages,

vulnerability indices, drawing of social positions (e.g., anonymity axioms or ignorance

veils), aversion to some welfare consequences of risks. Our approach is to specify shocks

that affect individuals and that the social planner should consider while assessing social
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situations. In that sense, these shocks can be seen as ‘social shocks’. Such shocks may

happen randomly or not.

To fix ideas, let us consider a bivariate problem described by endowments (x, y) to

individuals in a population. For example, x may be income and y health status, both

considered as positive variables. Of course, any other welfare attributes could be consid-

ered if wished7. Let us further assume that society is only composed of two individuals,

and let us examine the social planner’s preferences for equity across individuals. For

example, a planner who would be reluctant to see the same individual bearing all the

shocks, would prefer the social situation {(x − c, y); (x, y − d)}, where the first indi-

vidual has endowments x − c in the first attribute and y in the second attribute, and

the second individual has respective endowments equals to x and y − d, with c, d > 0

being fixed losses, to the social situation, or ‘society’, where the same individuals have

the respective endowments {(x, y); (x − c, y − d)}, in which an individual would suffer

all the losses. That is: in that case, the social planner prefers the situation where the

allocation of shocks is ‘shared’among individuals. However, there may be other types

of shocks and other ways to share shocks among individuals.

More generally and precisely, we now state a few definitions of (social planner)

preferences favouring welfare shock sharing. Let us start again with two individuals

with the same bivariate endowments, respectively (x, y) and (x, y). Then, we consider

the effect of diverse individual shocks from the point of view of the preferences of a social

planner. Each of the following definitions may be seen as a plausible normative axiom

in terms of some notions of shock sharing. The last definition involves four individuals.

Definition 3 Let be any endowments (x, y) ∈ R2+. Let c and d > 0. Let ε be a centered

numerical random variable and δ be a centered numerical random variable independent

of ε.

7As well as variables describing individual needs, although in the latter case the signs of derivatives

we use in this paper would have to be changed accordingly, as in Bourguignon (1989) for example.
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(i) A social planner is said to be welfare correlation averse if x− c > 0 and y−d > 0

implies that the social planner prefers the society {(x − c, y); (x, y − d)} to the society

{(x, y); (x−c, y−d)}. That is: ‘sharing fixed losses affecting different attributes is good’.

(ii) A social planner is said to be welfare prudent in x if x + ε > 0 and x − c >

0 implies that the planner prefers the society {(x − c, y); (x + ε, y)} to the society

{(x − c + ε, y); (x, y)}. That is: ‘sharing a fixed loss and a centred risk affecting the

same attribute is good’.

(iii) A social planner is said to be welfare cross-prudent in x if y + δ > 0 and

x− c > 0 implies that the planner prefers the society {(x, y+δ); (x− c, y)} to the society

{(x, y); (x−c, y+δ)}. That is: ‘sharing a fixed loss and a centred risk affecting different

attributes is good’.

(iv) A social planner is said to be welfare temperate in x if x + ε > 0 , x + δ > 0

and x + δ + ε > 0 implies that the planner prefers the society {(x + δ, y); (x + ε, y)}

to the society {(x, y); (x + δ + ε, y)}. That is: ‘sharing centred risks affecting the same

attribute is good’.

(v) A social planner is said to be welfare cross-temperate if x + ε > 0 and y +

δ > 0 implies that the planner prefers the society {(x + ε, y); (x, y + δ)} to the society

{(x, y); (x + ε, y + δ)}. That is: ‘sharing centred risks affecting different attributes is

good’.

(vi) A social planner is said to be welfare-premium correlation averse in x, if x+ε >

0, x−c+ε > 0 and y−d > 0 implies that the planner prefers the society {(x−c, y); (x, y−

d); (x+ε, y); (x+ε−c, y−d)} to society {(x, y); (x−c, y−d); (x+ε−c, y); (x+ε, y−d)}.

That is: ‘Sharing fixed losses affecting different attributes is good, while less so under

background risk in the first attribute’.

In addition, the explicit definitions for monotonicity and inequality aversions, with

respect to each attribute, could be explicitly stated and included in the list of definitions.

However, we omit them as they are trivial. Symmetric definitions can of course also be
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obtained by substituting the roles of x and y, and we also omit them.

In the definition (vi), the society can be split into two subgroups of two individuals

each. The welfare of the first two individuals can be compared across situations ac-

cordingly to welfare correlation aversion, which induces a preference for sharing losses.

However, the last two individuals are ranked in the opposite ranking in this case with

the same losses, the only difference being that they suffer in addition a centered random

shock on the first attribute. It turns out that the total result of all these comparisons

is deemed to be positive overall.

We shall show that under the expected utility hypothesis, the ‘Welfare-Premium

Correlation Aversion’corresponds to the definition of welfare correlation aversion with

the utility function in the definition (i) now replaced by the utility premium function,

that is: px(x, y, ε) = U(x, y)−EU(x+ε, y). Note that this premium notion corresponds

to the comparison of the situation of two individuals whose individual welfare is assessed

using their expected utility, instead of the comparison of random states in risk analysis.

The premium is the amount of cardinal utility an individual would accept to pay for

avoiding the be someone suffering the random risk as compared to someone not bearing

it. For example, this comparison can be seen as performed by the individual themselves

under a veil of ignorance to guarantee that individual idiosyncratic characteristics do not

affect the decision. The utility premium is justified by a possible welfare loss from the

random shock ε affecting the first attribute, under expected utility with concave VNM

utility function. Definition (vi) can be seen as related to assessing the introduction of a

background risk ε in the problem of correlation aversion to constant shocks.

Some of the stated definitions are akin to some notions used in risk analysis (pru-

dence, temperance). That is why we use a similar vocabulary even though there are

some differences between welfare and risk contexts. The first distinction is that we deal

with social welfare comparisons instead of individual decisions under risk. The second

one is that our notions are originally defined in terms of preferences over society situ-

ations, without invoking any representative function, for example utility functions, let
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alone expectations of von Neumann Morgenstern utility functions. Though, the par-

ticular application we examine is here in terms of expected utility. The third one is

that the kind of risk apportionment that has been used for risk problems is sometimes

formally different from our shock sharing formulae. The fourth one is that, for some

notions (welfare cross-temperance, welfare premium correlation aversion), we have been

unable to find any analog in the risk literature, even with broadened interpretation8.

The fifth one is that the anonymity axioms typically used in the social welfare literature

imply that the notions must be robust to some changes in the ranking or in the positions

of the individuals. We express this by using set notations instead of n-uplet notations

as it is typical in risk problems. The sixth one is that by invoking feelings of social

justice, the axioms we propose seem to be much more likely to gather agreement than

similar axioms defined in a context of risk apportionment, where they would look more

arbitrary (e.g., temperance). The seventh one is that our definition of utility premium

and social cost of risk involves the comparison of individuals, for example under a veil of

ignorance, instead of the comparison of random states. The last one is that all attributes

are supposed to be non-negative, since welfare attributes usually are, while it is not the

case for random financial returns for example.

Note that some notions (i.e., (ii), (iv)) are independent of the presence of the other

attribute, as long as this other attribute is kept fixed at a given level. Moreover, our

notions of shock sharing do not generally depend on assuming specific levels of the

endowments (x, y) since they are defined for any such endowmentsIIU. However, for

each defined notion some endowment levels are excluded from consideration in order to

impose that the ex-post endowments are positive and avoid absurdities. Indeed, many

welfare variables have a natural lower bound, for example education that cannot be

negative or consumption expenditure that cannot be below some subsistence minimum.

8Note however a draft paper by Crainich, Eeckhoudt and Courtois (2013) that was signaled to me

by Pr. Eeckhoudt after he saw our paper submitted at the 2013 Ecineq conference.
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Then, the corresponding shocks must be truncated9. Alternatively, some finite or infinite

supports [x
¯
, x̄]× [y

¯
, ȳ] could be used.

The results are valid for all c, d, ε, δ, that satisfy the domain constraints. However,

only one given version of these parameters and shocks is necessary in the above def-

initions that are therefore weaker than if the properties were a priori imposed for all

c, d, ε, δ. Yet, little substantial outcome seem to be achievable from this distinction,

unless there is an interest only in some given specific shocks.

As mentioned before, some of our new welfare shock sharing notions can be some-

what connected to some risk-apportionment notions in the literature. Eeckhoudt and

Schlesinger (2006) introduce risk-apportionment techniques to characterise unidimen-

sional prudence and temperance notions. Eeckhoudt, Rey and Schlesinger (2007) and

Jokung (2011) extend these notions to bivariate settings. Eeckhoudt and Schlesinger

(2006), and Eeckhoudt, Rey and Schlesinger (2007) characterize von Neuman-Morgenstern

utility functions for expected utility criteria by using prudence, temperance, correlation

aversion, cross-prudence and cross-temperance notions. However, in Eeckhoudt and

Schlesinger (2006) and in Jokung (2011), ‘high-order’risk preferences are constructed

through a binary recurrence process over lotteries, which is clearly distinct from our

approach, although they would coincide for low order notions such as risk aversion. In-

deed, Eeckhoudt and Schlesinger, and Jokung define risk-apportionment notions from a

sequence of risks, each defined recursively. In contrast, we directly define shock sharing

notions without using a recurrent sequence of risks.

Note that there is no obvious reason why the expected utility criteria of individual

welfare should necessarily be chosen as building blocks of our social welfare setting, even

if some shocks are random. However, this special case should of course be included in

most plausible settings and we stick to it in this paper. In general, individual risks can

often be seen as a socially risky situations, and they can be incorporated in the setting

9One could also specify how dying individuals are deal with in the welfare setting, while it is not

our interest in this paper.
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of social welfare criteria. For example, a von Neumann-Morgenstern (VNM) ranking of

socially risky situations that is consistent, in the Pareto sense, with individual VNM

utilities, may be seen as resulting from comparing the sum of the individual’s VNM ex-

pected utility functions (Harsanyi, 1955). Other aggregation theorems (Weymark, 1991

and 1993, Danan, Gajdos and Tallon, 2013) yield similar constructions, in particular for

incomplete preferences. From now, we therefore follow this representation of aggregate

social decision criteria based on sums of expected utilities.

Our first result of social welfare analysis is the following. In social welfare contexts

such that the social evaluation function is additive in individual utility functions of

possibly random attributes, we can characterise our axioms in the above definitions by

signs of partial derivatives of the utility function, up to the fourth order, as shown in

the next theorem.

Theorem 2 Under the expected utility hypothesis representing individual welfare, we

have;

(a) Inequality Aversion is equivalent to U11 ≤ 0. An alternative interpretation is

that of preferences for sharing fixed losses in the first attribute.

(b) Welfare Correlation Aversion is equivalent to U12 ≤ 0.

(c) Welfare Prudence in x is equivalent to U111 ≥ 0.

(d) Welfare Temperance in x is equivalent to U1111 ≤ 0.

(e) Welfare Cross-Prudence in x is equivalent to U122 ≥ 0.

(f) Welfare Cross-Temperance is equivalent to U1122 ≤ 0.

(g) Welfare-Premium Correlation Aversion in x is equivalent to U1112 ≤ 0.

Obviously, similar properties can be obtained by substituting the roles of x and y,

and we omit their explicit statements. The proofs are relegated in the appendix. They

rely on the fact that, on an interval, corresponding finite variations and derivatives have

the same sign when the sign of the derivatives is constant.
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Results (b) and (c), in our specific example with income and health, imply that

cross-prudence in income, U122 ≥ 0, along to U12 ≤ 0, can be seen as depicting a motive

for compensation to alleviate inequity in health through income transfers in favour of

ill persons, as exhibited in Muller and Trannoy (2012).

Justifying normative restrictions in social welfare analysis, by invoking Pigou-Dalton

transfer-type arguments is often controversial when not all attributes can actually be

transferred, for example health status. Using instead normative assumptions based

on our shock sharing axioms diminishes this diffi culty10. In any case, the concrete

mechanisms or institutions through which the shocks could be actually shared is another

matter, which is not dealt with in this article. We now briefly review other justifications

of the above signs of the fourth derivatives of utility.

First, the signs of some utility derivatives may be related to variations in aversion

to inequality. For example, U1122 ≤ 0 is equivalent to U22 concave in x1. In that case,

decreasing income transfers increase aversion to health inequality (in terms of the con-

cavity of U in x2). This would correspond to original transfer axioms if one wished to

attach a normative meaning to such change in health inequality aversion.m.d. IIT

Second, specific functional forms of utility functions can be invoked to justify some

signs of utility derivatives. For example, if U = V [Φ(x1) + Ψ(x2)], where V,Φ and

Ψ are some functions of type C4, then we have the following results (The proofs are

in the Appendix). If Φ′ ≥ 0,Ψ′ ≥ 0, V ′ ≥ 0 and V ′′ ≤ 0, then U1, U2 ≥ 0 and

U12 ≤ 0. If moreover Φ′′ ≤ 0 and Ψ′′ ≤ 0, then U11 ≤ 0 and U22 ≤ 0 too. If moreover

V ′′′ ≥ 0,Φ′′′ ≥ 0 and Ψ′′′ ≥ 0, then, in addition, we obtain U111, U112, U122 and U222 ≥ 0.

If moreover V (4) ≤ 0, then U1122 ≤ 0. Finally, if furthermore Φ(4) ≤ 0 and Ψ(4) ≤ 0,

then we have U1111 ≤ 0, U2222 ≤ 0, U1112 ≤ 0 and U1222 ≤ 0. In that sense, the signs

of the utility partial derivatives can here be justified by the signs of one-dimensional

10Shock sharing axioms are mathematically more general than transfer axioms for more than two

attributes because there may be several equivalent doubly stochastic matrices, and some of them cannot

be represented by transfers (Arnold, Marshall and Olkin, pp??, 20??). voir si l argument est juste
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derivatives of the building-block functions, up to the fourth order. One-dimensional

notions, such as monotonicity, inequality aversion, prudence and temperance applied to

V,Φ and Ψ may be used as suggesting assumptions in that case.

This result is interesting in that it may help relaxing cardinality hypotheses by

transforming utilities using arbitrary non-decreasing functions V , as long as they are

fourth time differentiable in the points of interest and satisfy in these points V ′′ ≤ 0,

V ′′′ ≥ 0, V (4) ≤ 0.

Finally, the condition U1111 ≤ 0 can be related to one-dimensional temperance or

other notions already developed in the risk literature. For example, increasing outer

inequality could naturally be defined as corresponding to negative fourth derivatives, as

a generalization and translation of Menezes and Wang (2005) for increasing outer risk.

Other notions that can be invoked to justify such sign are: Proper risk aversion (Pratt

and Zeckauser, 1987), Decreasing absolute prudence (Kimball, 1993), Risk vulnerability

(Gollier and Pratt, 1996).

In the next subsection, we introduce and discuss a novel normative condition based

on fourth order partial derivatives.

3.2 A new notion of welfare shock sharing

The conditions U1222 ≤ 0 and U1112 ≤ 0 have been left out in the social welfare litera-

ture11. We now characterise them. Without loss of generality, let us consider U1112 ≤ 0

for social preferences. As before, the characterization will rely on the fact that on an

interval, finite variations and derivative have the same signs when the derivative sign is

constant. We now spell out the proof fully in the text.

Let c be any fixed positive loss amount, and ε be any given centered random shock

such that x − c + ε > 0 and x − c > 0, for all x. To fix ideas variable x may be

considered to be income and y to be health. Let the utility loss function w(x, y; c) =

11See however footnote 8 for a recent investigation by Crainich et al. in the risk literature.
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U(x, y)− U(x− c, y), which describes the utility loss due to a fall in the first attribute.

Let the Jensen’s gap corresponding to function w: v(x, y) = w(x, y; c)−Ew(x+ ε, y; c).

Consider the condition v2(x, y) ≤ 0, which is akin to saying that the utility premium

px(x, y, ε) = U(x, y) − EU(x + ε, y) is subject to correlation aversion. Indeed, v2 =

U2(x, y)−U2(x−c, y)−EU2(x+ε, y)+EU2(x+ε−c, y) = px2(x, y, ε)−px2(x−c, y, ε) ≤ 0,

which is equivalent to px12 ≤ 0. We now describe this condition in two equivalent ways:

on the one hand, be examining the sign of a fourth-order partial derivative of utility;

and, on the other hand, by comparing the total utility outcomes for two societies that

respectively share or not these shocks.

Now, v2(x, y) = w2(x, y; c) − Ew2(x + ε, y; c) ≤ 0 if and only if w2 is concave in x.

Assuming derivability when needed, this condition is equivalent to w112 ≤ 0, for any

levels of the attributes, that is: U1112 ≤ 0, since finite variations and derivatives have

the same constant sign on an interval. Then, the condition (U1112 ≤ 0) that we want to

characterise is equivalent to v2(x, y) ≤ 0, for all x, y.

The next step consists in noting that we have v2(x, y) ≤ 0 for all x, y, c, ε such that

y > 0, x− c+ ε > 0 and x− c > 0 if and only if

w(x, y; c) − Ew(x + ε, y; c) − w(x, y − d; c) + Ew(x + ε, y − d; c) ≤ 0, for all such

x, y, c, ε and d, through replacing v and finite variation approximation. This yields, by

replacing w: U(x, y)− U(x− c, y)− EU(x+ ε, y) + EU(x+ ε− c, y)

−U(x, y− d) +U(x− c, y− d) +EU(x+ ε, y− d)−EU(x+ ε− c, y− d) ≤ 0, for all

such x, y, c, ε and d. By reordering terms, this condition can be rewritten as

U(x− c, y) + U(x, y − d) + EU(x+ ε, y) + EU(x+ ε− c, y − d)

≥ U(x, y) + U(x− c, y − d) + EU(x+ ε− c, y) + EU(x+ ε, y − d).

That is, providing one uses the expected utility as a valid welfare criterion, the four-

individuals society {(x− c, y); (x, y− d); (x+ ε, y); (x+ ε− c, y− d)} is preferred to the

four-individuals society {(x, y); (x− c, y − d); (x+ ε− c, y); (x+ ε, y − d)}.

The smoothing of the ‘background risk’ε reduces the concavity in x of the expected

utility function EU(.+ ε, y), as compared to the original utility function EU(., y). This
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makes inequality issues looking less severe for individuals subjected to the background

risk. This is the separation of the considerations pertaining to risk (through the ex-

pectation of utility and the corresponding utility premium) and to inequality (through

welfare shock sharing) that allows us to elicit this feature. We now gather our results

in the next theorem.

Theorem 3 For all x, y, c, d, ε such that x − c > 0, y − d > 0, x + ε > 0, x − c +

ε > 0, providing the expected utility criterion is used as the individual welfare measure,

Condition U1112 ≤ 0 is equivalent to:

The four-individuals society

{(x − c, y); (x , y − d); (x + ε, y); (x − c + ε, y − d)}

is weakly socially preferred to the four-individuals society

{(x, y); (x− c, y − d); (x− c+ ε, y); (x+ ε, y − d)}.

Of course, with similar proofs than above, we can obtain a similar normative jus-

tification for the symmetrical condition: U1222 ≤ 0. We have then provided a rigorous

characterisation of Condition U1112 ≤ 0. However, some readers may think that four-

individuals societies may be harder to grasp intuitively than two-individuals societies.

So, we now propose a two-individuals society characterisation.

The result in Theorem 3 could be interpreted as “sharing fixed losses affecting dif-

ferent attributes is good, while less so under background risk on the first attribute”.

Indeed, the situation of the first couple of individuals can be socially assessed as better

in the first society than in the second society by invoking correlation aversion, as above

in Theorem 2, i.e. {(x − c, y); (x , y − d)} �{(x, y); (x − c, y − d)}. On the contrary,

the situation of the second couple of individuals corresponds to increased correlation

of losses, while in presence of a background risk ε. Under correlation aversion, this

would yield {(x + ε, y); (x − c + ε, y − d)} ≺{(x− c+ε, y); (x+ε, y−d)}. However, the

background risk reduces the sensitivity of the social planner to inequality through ex-

pectation smoothing. This is why, on the whole, the planner can be assumed to consider
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that the degradation of the situation of the second subgroup of individuals is more than

compensated by the improvement of the situation of the first subgroup of individuals.

Returning to the utility premium, we have equivalently: px(x−c, y, ε) + px(x, y−d, ε) is

preferred to px(x, y, ε) + px(x− c, y− d, ε). In that sense, the utility premium function

embodies the potential social compensations of the risks across the two subgroups, and

allows the planner to focus on correlation aversion from non-random losses.

Note that the above intuitive reasoning also suggests that it makes sense to assume

U12 ≤ 0 when assuming U1112 ≤ 0 or U1222 ≤ 0. Indeed, one of the proposed interpre-

tation makes explicit use of the assumption of correlation aversion. Let us now turn to

the stochastic dominance results that can be reached by assuming these new normative

justifications of signs for the fourth order derivatives of utility.

4 Stochastic Dominance Results

We first need to define a few stochastic integrals that will be used to state our results.

4.1 Stochastic integrals

Definition 4 Let

Hx(x) =

x∫
0

Fx(s)ds, Lx(x) =

x∫
0

t∫
0

Fx(s)dsdt and Mx(x) =

x∫
0

u∫
0

t∫
0

Fx(s)dsdtdu,

H(x, y) =

x∫
0

y∫
0

F (s, t)dsdt and Hx(x; y) =

x∫
0

F (s, y)ds,

Lx(x; y) =

x∫
0

s∫
0

F (u, y)duds and Mx(x; y) =

x∫
0

s∫
0

u∫
0

F (t, y)dtduds,

and similar notations by substituting the role of x and y, respectively associated with

indices that we also denote x and y.
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In these definitions, the letter H indicates that the joint cdf F is integrated once

with respect to a variable. The index variable is denoted by a subscript. The semi-colon

in Hx, Lx and Mx indicates that the variable on the left-hand-side of the semi-colon is

used for integration more times than the variable at the right-hand-side. The gap for

these stochastic integrals between two distributions F and F ∗ is also denoted by using

the operator 4, as in Section 2.

4.2 A few stochastic dominance results

In order to derive our stochastic dominance theorems, we shall avail of recent results on

multidimensional stochastic orderings12. A first result is that the class U−− in Atkinson

and Bourguignon may now become legitimately available to empirical researchers, as

it has now clear normative interpretation by invoking the property of welfare cross-

temperance. The result obtained in Atkinson and Bourguignon (1982) is the following

and corresponds to classes of utility functions that are (2, 2)-increasing concave.13

Theorem 4 (Atkinson and Bourguignon): For (2, 2)−icv, that is: U1, U2 ≥ 0; U11, U12, U22 ≤

0; U112, U221 ≥ 0; U1122 ≤ 0, the following conditions are necessary and suffi cient for

stochastic dominance for continuous distributions.

12For example, Theorem 7(i) in Denuit, Eeckhoudt, Tsetlin and Walker (2010).
13Note that in Atkinson and Bourguignon (1982), only the proof of the suffi cient condition is given.

The necessary conditions is omitted on the ground that it is an obvious generalisation of the unidi-

mensional case. As a matter of fact, it is not and instead obtaining necessary conditions are often

the main diffi culty in such proof of necessary and suffi cient results. More details on a proof of the

necessary condition can be found in Atkinson and Bourguignon (1987) by going through the analogy of

needs problems. However, still there the convergence of the proposed generators to the complete class

of functions is presented as obvious, while it may be seen as a crucial diffi culty in this kind of proof.

In contrast, here the proof is a direct consequence of the knowledge of the generators of the class of

(2, 2)− icv functions.

Regarder de pres cette difference dans AB87, et dans le papier de Maurin et al. qui les

cite je crois
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(a) 4H(x, y) ≤ 0, for all x, y.

(b) 4Hy(y) ≤ 0, for all y.

(c) 4Hx(x) ≤ 0, for all x.

The conditions on the first-order derivatives indicate monotonicity with respect to

the two attributes. The condition U11 ≤ 0 (respectively U22 ≤ 0) can be interpreted as

stating some aversion for income (respectively for health) inequality, or alternatively in

our interpretation, preference for income (respectively health) shock sharing. U12 ≤ 0

describes welfare correlation aversion. U111 ≥ 0 (respectively U222 ≥ 0) is associated

with welfare prudence in income (respectively in health), while U112 ≥ 0 (respectively

U122 ≥ 0) means welfare cross-prudence in health (respectively in income). Finally,

U1112 ≤ 0 (respectively U1222 ≤ 0) is equivalent to welfare-premium correlation aversion

in income (respectively in health).

In contrast with the preceding class of utility functions, already examined by Atkin-

son and Bourguignon, the following class has never been studied to our knowledge. It

satisfies the property of welfare-premium correlation aversion in income. However, it

does not include conditions involving derivations with respect to the second argument

more than once. Such setting may be appropriate for welfare problems involving an

ordinal second attribute as in Bazen and Moyes (2003), and Gravel and Moyes (2012).

We obtain.

Theorem 5 For (3, 1)−icv, that is: U1, U2 ≥ 0; U11, U12 ≤ 0; U112, U111 ≥ 0; U1112 ≤ 0,

the following conditions are necessary and suffi cient for stochastic dominance.

(a) 4Lx(x; y) ≤ 0, for all x, y.

(b) 4Hx(a1; y) ≤ 0, for all y.

(c) 4Fy(y) ≤ 0, for all y.

Condition (c) corresponds to first order stochastic dominance on the second attribute,

often a quite demanding condition. This reflects that only first order derivations with
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respect to the second attribute have been used in the definition of the utility function

class. The second condition is a mixed stochastic dominance term where the joint cdf

is cumulated with respect to the first attribute, up to the corresponding upper bound.

In particular, at the bound y = a2, it implies 4Hx(a1) ≤ 0, which can be seen as a

negative difference in a specific inequality measure in the first attribute between the two

situations to compare.

When the marginal distributions of the second attribute are fixed, Condition (b)

corresponds to the sequential generalized Lorenz criterion. In the general case, it can

be expressed using Projected Generalized Lorenz tests, as shown in Muller and Trannoy

(2012).

Finally, Condition (a) involves again a mixed stochastic dominance term, where this

time the joint cdf is cumulated twice with respect to the first attribute, and for any level

of the two attributes. At the bound y = a2, it implies 4Lx(x) ≤ 0, which corresponds

to the well-known third-order one-dimensional stochastic dominance term.

The case of (1, 3) − icv is obviously symmetric. The next theorem corresponds to

well-known results of one-dimensional fourth-order stochastic dominance.

Theorem 6 For 4 − icv, that is: U1 ≥ 0, U11 ≤ 0, U111 ≥ 0;U1111 ≤ 0, the following

conditions are necessary and suffi cient for stochastic dominance.

(a) 4Mx(x) ≤ 0, for all x.

(b) 4Lx(a1) ≤ 0.

(c) 4Hx(a1) ≤ 0.

Beyond being a reminder, this theorem points out that the second attribute can be

neglected in the analysis, as long as the imposed normative conditions do not involve

utility derivatives with respect to this attribute. The reason why there is no first-order

condition of the type 4Fx(a1) ≤ 0 in this sequence is that Fx(a1) = 1 for the two

distributions to compare, then the difference cancels out. A similar proposition could
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of course be stated with the other attribute y. It is finally possible to deal with the

class of fourth order increasing directionally concave functions, which we do in the next

theorem.

Theorem 7 For 4−idircv, that is: U1, U2 ≥ 0; U11, U12, U22 ≤ 0; U112, U221, U111, U222 ≥

0;U1122, U1112, U1222, U1111, U2222 ≤ 0, we have:

(α)The 4-idircv class has a set of generators that is the intersection of the sets of

generators of the ( s1, s2)-icv functions with ( s1, s2)∈ {(2, 2), (3, 1), (1, 3), (4, 0), (0, 4)}.

(β) Let be the change in variable from the algebraic form to the trigonometric form

of complex numbers: z = x + iy = ρeiθ with ρ =
√
x2 + y2 and θ = Arg(z), where

x, y ∈ R, ρ ∈ R+ and θ ∈ [0, π/2] in the case a1 = a2 = +∞, so as to impose the

restrictions x ≥ 0 and y ≥ 0. Then,

4-idircv in (x,y) is equivalent to 4-icv in ρ.

( γ) The necessary and suffi cient conditions of stochastic dominance for the 4-idircv

class are, in the case a1 = a2 = +∞:

(a) 4Mρ(ρ) ≤ 0, for all ρ.

(b) 4Lρ(+∞) ≤ 0.

(c) 4Hρ(+∞) ≤ 0.

The conditions for other levels of a1 or a2 correspond to an appropriate bound aρ

in the expressions (b) and (c).

(δ) The generators of the 4 − idircv class are the functions of x and y defined

by:
(
c−

√
x2 + y2

)k−1
+
, for all c ∈ [0, aρ], if k = 4 and c = aρ if k = 1, 2, 3, with

(z)+ ≡ max{z, 0}.

Note that there is no problem of incompatibility of domain definitions when changing

in variables between (x, y) and (ρ, θ), even if some of these variables are bounded. The

conditions can be trivially adjusted by defining the relevant bounds of the joint domain

in both representations.
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Again, as in fourth-order one-dimensional stochastic dominance, we have a fourth-

order term in condition (a) of (γ), although this time in terms of the modulus ρ. We

can therefore hope for substantial gain in discriminatory power of empirical tests as

compared with typical applications limited to second order stochastic dominance.

Results (α) makes the link between the generators of two kinds of classes of interest.

However, this intersection property cannot be easily exploited to make explicit the

generators of the 4-idircv class. This is because the generators of each (r1, r2)− icv class

are infinitely many since they depend on parameters that can take an infinite number

of values. Furthermore, specifying completely the intersection of these generator sets

through equations does not seem to lead to any tractable system to solve. However,

Result (γ) provides the solution to this question by indicating that the generators of the

4-idircv class are simply the generators of the 4-icv class, which are known, while applied

to the modulus variable. In the next subsection, we convert our stochastic dominance

results into poverty orderings.

4.3 Poverty Orderings

Foster and Shorrocks (1988) showed that unidimensional stochastic dominance tests can

be seen to be equivalent to some one-dimensional poverty orderings.

Definition 5 The FGT Poverty measure of order α is:

Pα(F, z) = 1
zα

∫ F (z)
0

(z − F−1(p)) dp,

where F is the cdf of incomes and z is the poverty line. The parameter α ≥ 0 is

typically chosen equal to 0 (head-count index), 1 (poverty gap) or 2 (poverty severity

index).

The range of poverty lines is denoted Z.

The poverty ordering Pα(Z) are defined as follows for two income distributions F

and G: F Pα(Z) G if and only if
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Pα(F, z) ≤ Pα(G, z) for all z ∈ Z, and Pα(F, z) < Pα(G, z) for at least a z ∈ Z.

Cumulative integrals of the cdf F are defined recursively as follows: F1 ≡ F and

Fα(s) ≡
∫ s
0
Fα(t)dt, α ≥ 2.

With these notations, Foster and Shorrocks have shown that: zα−1Pα(F, z) =
∫ s
0

(z−

y)α−1dF (y) = (α − 1)!Fα(z). Thus, there is equivalence between the poverty ordering

Pα(Z) and the αth order stochastic dominance ordering. In particular, for all α ≤ β,

F Pα(Z) G implies F P β(Z) G. They also point out that F P 2(Z) G is equivalent

to F Generalised Lorenz dominating G. Equipped with these results, let us consider

successively our classes of utility function of interest.

4.3.1 4-icv

This is the class generating the classical results of fourth-order stochastic dominance.

Therefore, using Foster and Shorrocks results, we know that this dominance ordering

is equivalent to the poverty ordering P 4(Z). Although this ordering has not been typi-

cally used in the one-dimensional stochastic dominance literature, we have now provided

a shock sharing motivation to use it.

4.3.2 4-idircv

For the 4-idircv case, we can draw on Foster and Shorrocks classical results to state that

the corresponding stochastic dominance ordering is equivalent to the poverty dominance

ordering P 4(Zρ) calculated for the modulus variable, and for poverty lines zρ ∈ Zρ

defined in terms of this variable, where Zρ is the corresponding range of such poverty

lines. This is a direct consequence of Theorem 7.
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4.3.3 (3,1)-icv

The (3,1)-icv case necessitates to introduce notations for bivariate poverty indices. Let

zi be an absolute poverty line for the ith attribute, i = 1, 2.

Definition 6 The joint Poverty measure of order (k1, k2), for the population deprived

in x below a level z1 and deprived in y below a level z2, is:

Pk1,k2(x, y; z1, z2) =

∫
[0,z2]

∫
[0,z1]

(z1 − x)k1−1 (z2 − y)k2−1 dF (x, y).

Referring to the proof of Theorem 5, and translating to our setting, we have Fx,y �(3,1)−icv

F ∗x,y if and only if

Pk1,k2(x1, y1; zx, zy) =

∫
[0,zy ]

∫
[0,zx]

(zx − x1)k1−1 (zy − y1)k2−1 dFx1,y1(x1, y1)

≤
∫

[0,zy ]

∫
[0,zx]

(zx − x2)k1−1 (zy − y2)k2−1 dFx2,y2(x2, y2) = Pk1,k2(x2, y2; zx, zy),

for all zx ∈ [x
¯
, x̄] if k1 = 3 and zx = x̄ if k1 = 1, 2 and for all zy ∈

[
y
¯
, ȳ
]
if k2 = 3,

and zy = ȳ if k2 = 1, 2.

4.3.4 (2,2)-icv

we have Fx,y �(2,2)−icv F ∗x,y if and only if

Pk1,k2(x1, y1; zx, zy) =

∫
[0,zy ]

∫
[0,zx]

(zx − x1)k1−1 (zy − y1)k2−1 dFx1,y1(x1, y1)

≤
∫

[0,zy ]

∫
[0,zx]

(zx − x2)k1−1 (zy − y2)k2−1 dFx2,y2(x2, y2) = Pk1,k2(x2, y2; zx, zy),

for all zx ∈ [x
¯
, x̄] if k1 = 2 and zx = x̄ if k1 = 1, and for all zy ∈

[
y
¯
, ȳ
]
if k2 = 2, and

zy = ȳ if k2 = 1.
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4.3.5 Generalised Lorenz results

to do

5 Empirical Application

to do

6 Conclusion

to do
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Appendix

Proof of the sign conditions for the functional form U = V [Φ(x) + Ψ(y)]:

The signs of the derivatives are deduced from the hypotheses and the following

identities.

U1 = V ′Φ′ and U2 = V ′Ψ′; U12 = V ′′Φ′Ψ′.

U11 = V ′′(Φ′)2 + V ′Φ′′ and U22 = V ′′(Ψ′)2 + V ′Ψ′′.

U111 = V ′′′(Φ′)3 + 3V ′′Φ′Φ′′ + V ′Φ′′′.

U222 = V ′′′(Ψ′)3 + 3V ′′Ψ′Ψ′′ + V ′Ψ′′′.

U112 = V ′′′(Φ′)2Ψ′ + V ′′Φ′′Ψ′.

U122 = V ′′′(Ψ′)2Φ′ + V ′′Φ′Ψ′′.

U1122 = V (4)(Φ′Ψ′)2 + V ′′′[(Φ′)2Ψ′′ + (Ψ′)2Φ′′] + V ′′Φ′′Ψ′′.

U1111 = V (4)(Φ′)(4) + 6V ′′′(Φ′)2Φ′′ + 3V ′′(Φ′′)2 + 4V ′′Φ′′′Φ′ + V ′Φ(4).

U2222 = V (4)(Ψ′)(4) + 6V ′′′(Ψ′)2Ψ′′ + 3V ′′(Ψ′′)2 + 4V ′′Ψ′′′Ψ′ + V ′Ψ(4).

U1112 = V (4)(Φ′)3Ψ′ + 3V ′′′Φ′Φ′′Ψ′ + V ′′Φ′′′Ψ′.

U1222 = V (4)(Ψ′)3Φ′ + 3V ′′′Ψ′Ψ′′Φ′ + V ′′Ψ′′′Φ′.
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Proof of Theorem 1: Let s ≥ n. Recall Rs = {(r1, r2) ∈ N2| 1 ≤ r1 + r2 = s}.

Any function g ∈
⋂

(r1,r2)∈Rs

U(r1,r2)−icv is such that (−1)k1+k2+1 ∂k1+k2

∂xk1∂yk2
g ≥ 0, which we

denote property P (k1, k2), and is satisfied for k1 = 0, ..., r1; k2 = 0, ..., r2; k1+k2 ≥ 1; for

any 1 ≤ r1 + r2 = s.

In particular, we can now show that for any g ∈
⋂

(r1,r2)∈Rs

U(r1,r2)−icv, we have also

P (k1, k2) true for any (k1, k2) such that 1 ≤ k1 + k2 ≤ s. Indeed, there exist some

(r1, r2) ∈ Rs such that the k1 in the range 0, .., r1, and the k2 is in the range 0, .., r2,

with k1 + k2 ≥ 1. We have the sum k1 + k2 ≤ r1 + r2 = s, by construction. An example

of such (r1, r2) is r1 = k1 and r2 = s− r1. Therefore, g ∈ Us−idircv. We have then shown

Us−idircv ⊃
⋂

(r1,r2)∈Rs

U(r1,r2)−icv.

Reciprocally, let g ∈ Us−idircv and any given (r1, r2) ∈ Rs. We want to show that

g ∈ U(r1,r2)−icv.We know that P (k1, k2), for any k1 and k2 non-negative integers such that

1 ≤ k1 + k2 ≤ s. In particular, this is satisfied for all (k1, k2) such that k1 ≤ r1, k2 ≤ r2

since in that case k1 + k2 ≤ r1 + r2 = s. Therefore, g ∈ U(r1,r2)−icv. Since this reasoning

can apply for any (r1, r2) ∈ Rs, this implies Us−idircv ⊂
⋂

(r1,r2)∈Rs

U(r1,r2)−icv. QED.

Proof of Theorem 2:

(a) For the condition U12 ≤ 0, we start from v(x, y) ≡ U12(x, y) as an ancillary

function. Then, we consider finite variations as approximations of the partial derivatives

of U embodied in v. This is relevant here because on the whole considered domain, the

fixed sign of these finite variations will also be the sign of the corresponding derivatives.

Let c > 0 and d > 0 be any fixed constants such that x − c > 0 and y − d > 0. First,

U(x, y)−U(x− c, y) approximates U1. Then, U(x, y)−U(x− c, y)−U(x, y−d)+U(x−

c, y − d) approximates U12. As a result, U12 ≤ 0 over the whole domain is equivalent

to U(x, y) + U(x− c, y − d) ≤ U(x, y − d) + U(x− c, y) over the whole domain. Then,

provided we assume a social welfare criterion that is additive in utility functions, e.g.

utilitarianism, we have: society {(x − c, y); (x, y − d)} is weakly preferred to society

{(x, y); (x− c, y− d)}. Sharing among individuals shocks that are fixed losses is a social
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improvement even if the shocks affect different attributes.

(b) Starting instead from the condition U11 ≤ 0, and using the same approximation

method with x−c−d > 0, we obtain U(x, y)+U(x−c−d, y) ≤ U(x−c, y)+U(x−d, y).

With social welfare criteria that are additive in utilities, society {(x− c, y); (x−d, y)} is

weakly preferred to society {(x, y); (x− c− d, y)}. Sharing shocks that are fixed losses

affecting the same attribute among individuals is a social improvement.

Note that this interpretation of shock sharing does not seem to have appeared so

far directly in the welfare literature as an axiom. Indeed, this literature rather invokes

inequality aversion motives.

Of course, U22 ≤ 0 is liable to the same type of interpretation for the second attribute.

Note however, that it is quite possible that U11 ≤ 0 holds and not U22 ≤ 0 (or the

opposite) because the two attribute have distinct normative roles. For example, one

could imagine a society prone to redistribute income while ignoring health differences

for social policies.

voir ci dessous comment reordonner les conditions

(e) Let us now turn to the condition U112 ≥ 0. Let ε be any centered shock and d

any positive constant such that x + ε > 0 and y − d > 0. Define the utility premium

function by v(x, y) = px(x, y, ε) = U(x, y) − EU(x + ε, y). By deriving once with

respect to the second attribute, we obtain v2(x, y) = U2(x, y)− EU2(x+ ε, y). We now

impose the following fixed sign over the whole domain: v2 ≤ 0. On the one hand, using

Jensen’s inequality with respect to the first attribute, this condition is equivalent to U2

convex in x1, which is equivalent to U112 ≥ 0, the condition we are studying. On the

other hand, v2 ≤ 0 over the whole domain is equivalent to U(x, y) − EU(x + ε, y) −

U(x, y−d) +EU(x+ ε, y−d) ≤ 0, through finite variation approximation. Rearranging

yields U(x, y) + EU(x + ε, y − d) ≤ U(x, y − d) + EU(x + ε, y), which implies that

{(x, y − d); (x + ε, y)} is weakly preferred to {(x, y); (x + ε, y − d)}. If one shock is a

fixed loss and the other is a random centered shock on the other attribute, sharing them

among individuals improves social welfare. Of course, the case U122 ≥ 0 can be dealt
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with similarly.

(c) We now consider the condition U111 ≥ 0. Using the same reasoning as just before,

while allocating the fixed loss to the first attribute instead, we obtain

U(x, y) +EU(x+ ε− c, y) ≤ U(x− c, y) +EU(x+ ε, y), with c any positive constant

and ε any centered shock such that x + ε − c > 0, x − c > 0 and x + ε > 0. Society

{(x− c, y); (x+ ε, y)} is weakly preferred to {(x, y); (x+ ε− c, y)}.

Again, we find an interpretation in terms of shock sharing of a fixed loss shock and

a random shock on the same attribute between two individuals, which leads to social

welfare improvement. Note that even in the risk context, such interpretation does not

seem to have emerged from the literature. The case U222 ≥ 0 is similar.

(f) The condition U1122 ≤ 0 is treated by starting again with the utility premium

function v(x, y) = px(x, y, ε) = U(x, y) − EU(x + ε), with ε any centered shock such

that x + ε > 0. However, we now derive twice with respect to the second argument

to obtain v22(x, y) = U22(x, y) − EU22(x + ε). In these conditions, v22(x, y) ≥ 0 is

equivalent to U22 concave in x1, that is: U1122 ≤ 0. On the other hand, v22(x, y) ≥ 0

can be characterized by the Jensen’s inequality with respect to the second argument,

which is applied to the utility premium function: v(x, y) − Ev(x, y + δ) ≤ 0, where δ

is a random centered shock independent of ε. By replacing the definition of v, we get

U(x, y) − EU(x + ε, y) − EU(x, y + δ) + EU(x + ε, y + δ) ≤ 0. Rearranging leads

to U(x, y) + EU(x + ε, y + δ) ≤ EU(x + ε, y) + EU(x, y + δ). This yields: Society

{(x, y + δ); (x + ε, y)} is weakly preferred to Society {(x, y); (x + ε, y + δ)}. In that

case, that is the sharing of two random shocks, each on a different attribute, between

individuals that enhances social welfare.

(d) For the condition U1111 ≤ 0, the proof of the previous case can be replicated by

allocating the random centered shock δ to the first attribute instead, still with δ and ε

any centered random shocks mutually independent such that x + ε > 0, x + ε + δ > 0

and x+ δ > 0. This leads to U(x, y) +EU(x+ ε+ δ, y) ≤ EU(x+ ε, y) +EU(x+ δ, y),

which can be interpreted in terms of shock sharing preferences as before, with here the
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random shocks affecting the same attribute. The case U2222 ≤ 0 is similar.

(g) The proof of this case is in the text in subsection 3.2. QED.

Proof of Theorems 5 and 6:

The results can be obtained by using the following result in terms of expectations

from Denuit, Eeckhoudt, Tsetlin and Walker (2010). Let x̃, ỹ ∈ [x
¯
, x̄] two real random

variables. Then, x̃ �s−icv ỹ if and only if

E

[
N∏
i=1

(ci − x̃i)ki−1+

]
≤ E

[
N∏
i=1

(ci − ỹi)ki−1+

]
,

for all ci ∈ [x
¯ i
, x̄i] if ki = si and ci = x̄i if ki = 1, ..., si−1; i = 1, ..., n. Our calculus of

these conditions using successive integrations by parts yield the results of the Theorems

5 and 6. Note that our stated result for Theorem 5 simplifies because 4F (x̄1, x̄2) ≤ 0.

Proof of Theorem 7:

It is a classic result of one-dimensional stochastic dominance analysis (e.g., in Moyes,

1999b). Note that it can also be derived from Denuit-Eeckhoudt-Tsetlin-Walker’s for-

mula and integrations by parts as in the proof of Theorems 5 and 6.

Proof of Theorem 8:

(α) We have proven in Theorem 1 that one can use the intersection characterisation

of generators for s − idircv functions as the intersection of the sets of generators of

some corresponding (r1, r2) − icv functions. We apply it to s = 4. So far, this class of

generator was unknown.

(β) Consider the representation of couple (x, y) in the complex plan z ≡ x+iy ≡ ρeiθ,

with the modulus of the complex number z defined as ρ =
√
x2 + y2 and its argument

defined as θ = Arg(z), here restricted to [0, π/2] so as to impose x ≥ 0 and y ≥ 0. The

inverse transformation yields x = ρ cos θ and y = ρ sin θ.

Then, the derivatives of a function u(x, y) when transformed as a function of (ρ, θ)

can be obtained by using the chain rule. For example, for a function let u(ρ, θ) ≡

u(x, y), thus allowing a slight abuse of notation to alleviate notations. By excluding
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the uninteresting case ρ = 0, where there is no two-side derivatives, we have ∂u
∂ρ

=

∂u
∂x

∂x
∂ρ

+ ∂u
∂y

∂y
∂ρ

= ∂u
∂x

cos θ + ∂u
∂y

sin θ = 1
ρ

(
x∂u
∂x

+ y ∂u
∂y

)
.

At the second order, by keeping the θ constant since we are calculating partial

derivatives and θ does not depend on ρ in the formula, we obtain ∂2u
∂ρ2

=
∂[ ∂u∂x cos θ+

∂u
∂y
sin θ]

∂ρ
=

cos θ
∂[ ∂u∂x ]
∂ρ

+ sin θ
∂[ ∂u∂y ]
∂ρ

= cos2 θ ∂
2u
∂x2

+ 2 sin θ cos θ ∂2u
∂x∂y

+ sin2 θ ∂
2u
∂y2

by replacing respectively

u with ∂u
∂x
and ∂u

∂y
in the previous calculus and rearranging. Iterating yields ∂3u

∂ρ3
=

cos3 θ ∂
3u
∂x3

+ 3 sin θ cos2 θ ∂3u
∂x2∂y

+ 3 sin2 θ cos θ ∂3u
∂x∂y2

+ sin3 θ ∂
3u
∂y3
. Finally, ∂

4u
∂ρ4

= cos4 θ ∂
4u
∂x4

+

4 sin θ cos3 θ ∂4u
∂x3∂y

+ 6 sin2 θ cos2 θ ∂4u
∂x2∂y2

+ 4 sin3 θ cos θ ∂4u
∂x∂y3

+ sin4 θ ∂
4u
∂y4
.

Then, it is clear in these formulae that a (2, 2)− icv utility function u in (x, y) has

all its considered partial derivatives, with respect to x and y, alternatively non-positive

and non-negative as we raise the order of derivation with respect to ρ (that is: positive

for first order derivatives, negative for second order, etc). Since all the coeffi cients of

these partials in these formulae are non-negative due to θ ∈ [0, π/2], we obtain that if

function u is (2, 2)− icv in (x, y), then it is 4-idircv in ρ.

Let us now prove the reciprocal statement by recurrence, starting with the first-order

derivatives. Let be a function g(ρ, θ) of (ρ, θ) and consider its variations after change

in variables into (x, y). Assume that ∂g
∂ρ
≥ 0 for all ρ > 0, θ ∈]0, π/2[, so as to avoid

boundaries where the derivatives of interest are not defined. Let us show that ∂g
∂x
and

∂g
∂y
≥ 0. Fixing θ = 0 (respectively, θ = π/2) yields ρ = x (respectively ρ = y) and

∂g
∂x

= ∂g
∂ρ |θ=0

≥ 0 (respectively ∂g
∂y

= ∂g
∂ρ |θ=π/2

≥ 0), in this particular direction. Another

way to see this result is just to notice that ∂g
∂x
is the orthogonal projection of ∂g

∂ρ
along

the y-axis. The identity of the signs of ∂g
∂y
and ∂g

∂ρ
can be obtained in the same fashion.

Incrementing the derivation order with respect to ρ (i.e., imposing ∂2g
∂ρ2
≤ 0, ∂

3g
∂ρ3
≥

0, ∂
4g
∂ρ4
≤ 0) allows us to obtain the successive and respective non-positive and non-

negative partials of order 2, 3 and 4 with respect to (x, y), as the consequence of iterating

the previous reasoning by fixing θ = 0 and θ = π/2. We obtain ∂k1+k2g

∂x
k1 ∂yk2

of the sign

of (−1)k1+k2+1, as it is the sign of ∂k1+k2g

∂ρ
k1+k2

. Therefore, [u is 4− idircv in (x, y)] ⇐⇒

[u is 4− icv in ρ].
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Finally, it is easy to obtain the stochastic dominance results of the proposition by

applying already known results of one-dimensional stochastic dominance for 4 − icv

utility functions and recalled in Theorem 7. QED.
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