Multidimensional Social Welfare Dominance with $4^{\text {th }}$ Order Derivatives of Utility

Christophe Muller

Aix-Marseille School of Economics

August 2014
conf

1. Dominance

- Poverty, Inequality, Social Welfare
- Robust ‘dominance’ judgments: accepted by people with different norms
- One-dimensional settings: H-L-P (1929), Karamata (1932), Kolm (1969) and Atkinson (1970)
- Normative hypotheses: e.g., variations in aversion to inequality

Multi-Dimensional Setting

- Less obvious how to obtain powerful rules
- Atkinson and Bourguignon Restud82, 87; Koshevoy 95, JASA98; Moyes 99
- Bazen and Moyes 03, Gravel and Moyes 12, Muller and Trannoy JET11, 12
- etc
- Signs of $4^{\text {th }}$ order derivatives generally not used because believed to be hard to interpret
- How to gain discriminatory power?

The Contribution

- A new method to incorporate normative restrictions in welfare analysis:
'Welfare Shock Sharing'
- Providing normative interpretations to sign conditions for $4^{\text {th }}$ degree derivatives of utility
- Characterization of a new asymmetric condition: $\mathrm{U}_{1112}<0$
- New Necessary and Sufficient condition for SD results for several classes of utilities
- Poverty Ordering characterizations

Signs of derivatives of utility

- Two attributes
- Signs of derivatives of utility as normative conditions
- $\Delta \mathrm{W}=\mathrm{W}_{\mathrm{F}}-\mathrm{W}_{\mathrm{F}^{*}}=\iint \mathrm{U}(\mathrm{x}, \mathrm{y}) \mathrm{d} \Delta \mathrm{F}(\mathrm{x}, \mathrm{y})$
- Continuous distributions
- U defined and 'sufficiently' differentiable over x in]0, a_{1}] and y in]0, a_{2}]; or any intervals
- Benchmark: $\mathrm{U}_{1}, \mathrm{U}_{2} \geq 0 ; \mathrm{U}_{12}, \mathrm{U}_{11}, \mathrm{U}_{22} \leq 0$
- $\mathrm{U}_{111}, \mathrm{U}_{112}, \mathrm{U}_{122}, \mathrm{U}_{222} \geq 0$
- Not always necessary to assume all of the above
- $\mathrm{U}_{1111}, \mathrm{U}_{1112}, \mathrm{U}_{1122}, \mathrm{U}_{1222}, \mathrm{U}_{2222} \leq 0$

2. Welfare Shock Sharing

- Extending welfare notions by defining 'Social Shocks’ and stating solidarity
- Take two individuals with same bivariate nonrandom endowments. Which welfare effect of some welfare shocks on this small society?
- Welfare shocks may be: losses of some attributes, risks affecting some attributes,...
- Applications to SWFs additive in individual utility functions of possibly random variables

Let be any endowments $(x, y) \in \mathrm{R}_{+}{ }^{2}$. Let c and d >0. Let ε be a centered real random variable and δ be a centered real random variable independent of ε

- (i) A social planner is said to be Welfare Correlation Averse if x-c > 0 and y-d > 0 implies that the social planner prefers the state
$\{(\mathrm{x}-\mathrm{c}, \mathrm{y}) ;(\mathrm{x}, \mathrm{y}-\mathrm{d})\}$ to the state $\{(\mathrm{x}, \mathrm{y}) ;(\mathrm{x}-\mathrm{c}, \mathrm{y}-\mathrm{d})\}$
That is: `Sharing fixed losses affecting different attributes improves social welfare'
- (ii) A social planner is said to be Welfare Prudent in x if $x+\varepsilon>0$ and $x-c>0$ implies that the planner prefers the state

$$
\{(\mathrm{x}-\mathrm{c}, \mathrm{y}) ;(\mathrm{x}+\varepsilon, \mathrm{y})\} \text { to }\{(\mathrm{x}-\mathrm{c}+\varepsilon, \mathrm{y}) ;(\mathrm{x}, \mathrm{y})\}
$$

`Sharing a fixed loss and a centred risk affecting the same first attribute improves social welfare '

- (iii) A social planner is said to be Welfare CrossPrudent in x if $\mathrm{y}+\delta>0$ and $\mathrm{x}-\mathrm{c}>0$ implies that the planner prefers the state

$$
\{(\mathrm{x}, \mathrm{y}+\delta) ;(\mathrm{x}-\mathrm{c}, \mathrm{y})\} \text { to }\{(\mathrm{x}, \mathrm{y}) ;(\mathrm{x}-\mathrm{c}, \mathrm{y}+\delta)\}
$$

`Sharing a fixed loss and a centred risk affecting different attributes improves social welfare '

- (iv) A social planner is said to be Welfare Temperate in x if $\mathrm{x}+\varepsilon>0, \mathrm{x}+\delta>0$ and $\mathrm{x}+\delta+\varepsilon>0$ implies that the planner prefers the state

$$
\{(\mathrm{x}+\delta, \mathrm{y}) ;(\mathrm{x}+\varepsilon, \mathrm{y})\} \text { to }\{(\mathrm{x}, \mathrm{y}) ;(\mathrm{x}+\delta+\varepsilon, \mathrm{y})\}
$$

`Sharing centred risks affecting the same first attribute improves social welfare'

- (v) A social planner is said to be Welfare CrossTemperate if $\mathrm{x}+\varepsilon>0$ and $\mathrm{y}+\delta>0$ implies that the planner prefers the state
- $\{(\mathrm{x}+\varepsilon, \mathrm{y}) ;(\mathrm{x}, \mathrm{y}+\delta)\}$ to $\{(\mathrm{x}, \mathrm{y}) ;(\mathrm{x}+\varepsilon, \mathrm{y}+\delta)\}$
`Sharing centred risks affecting different attributes improves social welfare'
- (vi) A social planner is said to be WelfarePremium Correlation Averse in x if $\mathrm{x}+\varepsilon>0$, $x-c+\varepsilon>0$ and $y-d>0$ implies that the planner prefers the state

$$
\begin{aligned}
& \quad\{(\mathrm{x}-\mathrm{c}, \mathrm{y}) ;(\mathrm{x}, \mathrm{y}-\mathrm{d}) ;(\mathrm{x}+\varepsilon, \mathrm{y}) ;(\mathrm{x}+\varepsilon-\mathrm{c}, \mathrm{y}-\mathrm{d})\} \\
& \text { to }\{(\mathrm{x}, \mathrm{y}) ;(\mathrm{x}-\mathrm{c}, \mathrm{y}-\mathrm{d}) ;(\mathrm{x}+\varepsilon-\mathrm{c}, \mathrm{y}) ;(\mathrm{x}+\varepsilon, \mathrm{y}-\mathrm{d})\}
\end{aligned}
$$

`Sharing fixed losses affecting different attributes improves social welfare, while less so under background risk in the first attribute'

Equivalences under Expected Utility

- (a) Inequality Aversion is equivalent to $\mathrm{U}_{11} \leq 0$ (Eq ${ }^{t}$ to preference for sharing fixed losses in x)
- (b) Welfare Correlation Aversion is equivalent to $\mathrm{U}_{12} \leq 0$
- (c) Welfare Prudence in x is equivalent to $\mathrm{U}_{111} \geq 0$
- (d) Welfare Temperance in x is equivalent to $\mathrm{U}_{1111} \leq 0$
- (e) Welfare Cross-Prudence in x is equivalent to $\mathrm{U}_{122} \geq 0$
- (f) Welfare Cross-Temperance is equivalent to $\mathrm{U}_{1122} \leq 0$
- (g) Welfare Premium Correlation Aversion in x is equivalent to $\mathrm{U}_{1112} \leq 0$

Proof for $\mathrm{U}_{1112} \leq 0$

- Let c be a fixed loss and ε be a centred risk
- Jensen's gap for a function w:

$$
\text { Let } \mathrm{v}(\mathrm{x}, \mathrm{y})=\mathrm{w}(\mathrm{x}, \mathrm{y} ; \mathrm{c})-\operatorname{Ew}(\mathrm{x}+\varepsilon, \mathrm{y} ; \mathrm{c}),
$$

where $\mathrm{w}(\mathrm{x}, \mathrm{y} ; \mathrm{c})=\mathrm{U}(\mathrm{x}, \mathrm{y})-\mathrm{U}(\mathrm{x}-\mathrm{c}, \mathrm{y})=$ Utility loss due to a fall in the first attribute.

- Then, $\mathrm{v}_{2}(\mathrm{x}, \mathrm{y})=\mathrm{w}_{2}(\mathrm{x}, \mathrm{y} ; \mathrm{c})-\mathrm{Ew}_{2}(\mathrm{x}+\varepsilon, \mathrm{y} ; \mathrm{c}) \leq 0$
iff $\mathrm{w}_{112} \leq 0$, that is: $\mathbf{U}_{\mathbf{1 1 1 2}} \leq \mathbf{0}$
Because same sign for derivatives and finite variations
- $\mathrm{V}_{2}(\mathrm{x}, \mathrm{y})=\mathrm{w}_{2}(\mathrm{x}, \mathrm{y} ; \mathrm{c})-\mathrm{Ew}_{2}(\mathrm{x}+\varepsilon, \mathrm{y} ; \mathrm{c}) \leq 0$, all c
iff $w(x, y ; c)-\operatorname{Ew}(x+\varepsilon, y ; c)-w(x, y-d ; c)$
$+\operatorname{Ew}(\mathrm{x}+\varepsilon, \mathrm{y}-\mathrm{d} ; \mathrm{c}) \leq 0$, for all c and d
- Then, $\mathrm{U}(\mathrm{x}, \mathrm{y})-\mathrm{U}(\mathrm{x}-\mathrm{c}, \mathrm{y})-\mathrm{EU}(\mathrm{x}+\varepsilon, \mathrm{y})$
$+\mathrm{EU}(\mathrm{x}-\mathrm{c}+\varepsilon, \mathrm{y})-\mathrm{U}(\mathrm{x}, \mathrm{y}-\mathrm{d})+\mathrm{U}(\mathrm{x}-\mathrm{c}, \mathrm{y}-\mathrm{d})$
$+\mathrm{EU}(\mathrm{x}+\varepsilon, \mathrm{y}-\mathrm{d})-\mathrm{EU}(\mathrm{x}-\mathrm{c}+\varepsilon, \mathrm{y}-\mathrm{d}) \leq 0$
Therefore, for a 4-person society:
- $\mathbf{U}(\mathbf{x}-\mathbf{c}, \mathbf{y})+\mathbf{U}(\mathbf{x}, \mathbf{y}-\mathbf{d})+\mathbf{E U}(\mathbf{x}+\boldsymbol{\varepsilon}, \mathbf{y})+\mathbf{E U}(\mathbf{x}-\mathbf{c}+\boldsymbol{\varepsilon}, \mathbf{y}-\mathbf{d})$ $\geq \mathbf{U}(\mathbf{x}, \mathbf{y})+\mathbf{U}(\mathbf{x}-\mathbf{c}, \mathbf{y}-\mathbf{d})+\mathbf{E U}(\mathbf{x}-\mathbf{c}+\varepsilon, \mathbf{y})+\mathbf{E U}(\mathbf{x}+\varepsilon, \mathbf{y}-\mathbf{d})$
- Interpretation by decomposing in two groups
- $\{(x-c, y) ;(x, y-d) ;(x+\varepsilon, y) ;(x+\varepsilon-c, y-d)\}$
preferred to

$$
\{(x, y) ;(x-c, y-d) ;(x+\varepsilon-c, y) ;(x+\varepsilon, y-d)\}
$$

- Utility Premium $\mathrm{p}^{\mathrm{x}}(\mathrm{x}, \mathrm{y}, \varepsilon)=\mathrm{U}(\mathrm{x}, \mathrm{y})-\mathrm{EU}(\mathrm{x}+\varepsilon, \mathrm{y})$
- Premium for being an individual under risk rather than another without risk, under veil of ignorance

$$
\mathrm{p}^{\mathrm{x}}(\mathrm{x}-\mathrm{c}, \mathrm{y}, \varepsilon)+\mathrm{p}^{\mathrm{x}}(\mathrm{x}, \mathrm{y}-\mathrm{d}, \varepsilon)
$$

is preferred to

$$
\mathrm{p}^{\mathrm{x}}(\mathrm{x}, \mathrm{y}, \varepsilon)+\mathrm{p}^{\mathrm{x}}(\mathrm{x}-\mathrm{c}, \mathrm{y}-\mathrm{d}, \varepsilon)
$$

- 'Welfare-Premium Correlation Aversion'

3. Stochastic Dominance

- ' $\left(s_{1}, s_{2}\right)$-icv: $\left(s_{1}, s_{2}\right)$-increasing concave':

$$
(-1)^{k_{1}+\mathrm{k} 2+1}\left[\partial^{\mathrm{k}_{1}+\mathrm{k} 2} / \partial^{\mathrm{k}_{1}} \mathrm{x} \partial^{\mathrm{k} 2} \mathrm{y}\right] \mathrm{g} \geq 0
$$

for $k_{i}=0, \ldots, s_{i} ; i=1,2 ; s_{i}$ non-negative integers and $1 \leq \mathrm{k}_{1}+\mathrm{k}_{2}$

- 's-idircv: s-increasing directionally concave

$$
(-1)^{\mathrm{k}_{1}+\mathrm{k} 2+1}\left[\partial^{\mathrm{k}_{1}+\mathrm{k} 2} / \partial^{\mathrm{k}_{1}} \mathrm{X} \partial^{\mathrm{k} 2} \mathrm{y}\right] \mathrm{g} \geq 0
$$

for k_{1} and k_{2} non-negative integers and
$1 \leq \mathrm{k}_{1}+\mathrm{k}_{2} \leq \mathrm{s}$, s is a non-negative integer ≥ 2

- Let s be an integer greater of equal to n
- $\mathrm{R}_{\mathrm{s}}=\left\{\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right) \in \mathrm{N}^{2} \mid 1 \leq \mathrm{r}_{1}+\mathrm{r}_{2}=\mathrm{s}\right\}$
- Let U_{S} be the set of generators of a set of utility functions S . Then,

$$
U_{s-i d i r c v}=\bigcap_{\left\{\left(r_{1}, r_{2}\right) \in \operatorname{Rs}\right\}} U_{\left(r_{1}, r_{2}\right) \text {-icv }}
$$

- $\mathrm{H}_{\mathrm{x}}(\mathrm{x})=\int_{0}{ }^{\mathrm{x}} \mathrm{F}_{\mathrm{x}}(\mathrm{s}) \mathrm{ds}$
- $\mathrm{L}_{\mathrm{x}}(\mathrm{x})=\int_{0} \mathrm{x} \int_{0} \mathrm{t} \mathrm{F}_{\mathrm{x}}(\mathrm{s}) \mathrm{d} s d t$
- $\mathrm{M}_{\mathrm{x}}(\mathrm{x})=\int_{0} \mathrm{x} \int_{0} \mathrm{u} \int_{0}{ }^{\mathrm{t}} \mathrm{F}_{\mathrm{x}}(\mathrm{s}) \mathrm{dsdtdu}$
- $\mathrm{H}(\mathrm{x}, \mathrm{y})=\int_{0} \mathrm{x} \int_{0} \mathrm{y} F(\mathrm{~s}, \mathrm{t}) \mathrm{dsdt}$
- $\mathrm{H}_{\mathrm{x}}(\mathrm{x} ; \mathrm{y})=\int_{0} \mathrm{x} F(\mathrm{~s}, \mathrm{y}) \mathrm{ds}$
- $\mathrm{L}_{\mathrm{x}}(\mathrm{x} ; \mathrm{y})=\int_{0} \mathrm{x} \int_{0}{ }^{\mathrm{s}} \mathrm{F}(\mathrm{u}, \mathrm{y})$ duds
- $\mathrm{M}_{\mathrm{x}}(\mathrm{x} ; \mathrm{y})=\int_{0} \mathrm{x} \int_{0} \mathrm{~s} \int_{0}^{\mathrm{u}} \mathrm{F}(\mathrm{t}, \mathrm{y}) \mathrm{dtduds}$
- Idem by substituting the roles of x and y

Stochastic Dominance Results

- For any distributions : $\Delta \mathrm{F}=\mathrm{F}-\mathrm{F}^{*}$ All usual signs for first and second derivatives of utility
- (A\&B82): $1^{\text {st }}+2^{\text {nd }}+\mathrm{U}_{112}, \mathrm{U}_{122} \geq 0, \mathrm{U}_{1122} \leq 0$

F SD F^{*} is equivalent to:
(1) For all $\mathrm{x}, \Delta \mathrm{H}_{\mathrm{x}}(\mathrm{x}) \leq 0$
(2) For all $y, \Delta \mathrm{H}_{\mathrm{y}}(\mathrm{y}) \leq 0$
(3) For all $x, y, \Delta H(x, y) \leq 0$

- Now a full proof of NSC

$$
\begin{gathered}
(3,1)-\mathrm{icv}: \\
\mathrm{U}_{1}, \mathrm{U}_{2} \geq 0 ; \mathrm{U}_{11}, \mathrm{U}_{12} \leq 0 \\
\mathrm{U}_{112}, \mathrm{U}_{111} \geq 0 ; \mathrm{U}_{1112} \leq 0
\end{gathered}
$$

- (a) $\Delta \mathrm{L}_{\mathrm{x}}(\mathrm{x} ; \mathrm{y}) \leq 0$, for all x, y
- (b) $\Delta \mathrm{H}_{\mathrm{x}}\left(\mathrm{a}_{1} ; \mathrm{y}\right) \leq 0$, for all y
- (c) $\Delta \mathrm{F}_{\mathrm{y}}(\mathrm{y}) \leq 0$, for all y
- Idem for (1,3)-icv

$$
\begin{gathered}
\text { 4-icv: } \\
\mathrm{U}_{1} \geq 0 ; \mathrm{U}_{11} \leq 0 ; \mathrm{U}_{111} \geq 0 ; \mathrm{U}_{1111} \leq 0
\end{gathered}
$$

- One-dimensional: results already known (4 $4^{\text {th }}$ degree SD)
- NOW there is a good reason to assume $\mathrm{U}_{1111} \leq 0$: 'Sharing risks on x is good for social welfare'
- (a) $\Delta \mathrm{M}_{\mathrm{x}}(\mathrm{x}) \leq 0$, for all x
- (b) $\Delta \mathrm{L}_{\mathrm{x}}\left(\mathrm{a}_{1}\right) \leq 0$
- (c) $\Delta \mathrm{H}_{\mathrm{x}}\left(\mathrm{a}_{1}\right) \leq 0$
- Idem with y

4-idircv: $\mathrm{U}_{1}, \mathrm{U}_{2} \geq 0 ; \mathrm{U}_{11}, \mathrm{U}_{12}, \mathrm{U}_{22} \leq 0$; $\mathrm{U}_{111}, \mathrm{U}_{112}, \mathrm{U}_{122}, \mathrm{U}_{222} \geq 0$;
 $\mathrm{U}_{1111}, \mathrm{U}_{1222}, \mathrm{U}_{1122}, \mathrm{U}_{1112}, \mathrm{U}_{2222} \leq 0$

- Has a class of generators that is the intersection of the classes of generators of the ($\mathrm{s}_{1}, \mathrm{~s}_{2}$)-icv functions sets with $\left(s_{1}, s_{2}\right)$ in $\{(2,2),(3,1),(1,3),(4,0),(0,4)\}$
- So far, the generators of this class were not known

Change in variable in the complex plan

- $z=x+i y=\rho e^{i \theta}$
- Modulus $\rho=|z|=\operatorname{sqrt}\left(x^{2}+y^{2}\right)$
- $\theta=\operatorname{Arg} z$ in $[0, \pi / 2]$ since $x, y>0$
- Theorem:

4-idircv in (x, y) is equivalent to 4-icv in ρ

4-idircv Stochastic Dominance

NSC with $\mathrm{a}_{1}=\mathrm{a}_{2}=+\infty$:

- (a)

$$
\Delta M_{\rho}(\rho) \leq 0, \text { for all } \rho
$$

- (b)
$\Delta L_{\rho}(+\infty) \leq 0$
- (c)

$$
\Delta H_{\rho}(+\infty) \leq 0
$$

- An appropriate bound a_{ρ} for (b) and (c) in the cases with bounded domains
- Examples of various domains for (x, y)

Generators of 4-idircv

- The generators of the 4 -idircv class are the functions of x and y defined by:

$$
\operatorname{Max}\left\{c-\operatorname{sqrt}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right), 0\right\}^{\mathrm{k}-1},
$$

- for all $c \in\left[0, a_{\rho}\right]$, if $k=4$ and $c=a_{\rho}$ if $k=1,2,3$

4. Poverty Orderings

- $\mathrm{P}^{\mathrm{k}_{1}, \mathrm{k}_{2}}=\int_{\left[0, \mathrm{z}_{2}\right]} \int_{\left[0, \mathrm{z}_{1}\right]}\left(\mathrm{z}_{1}-\mathrm{x}\right)^{\mathrm{k}_{1}-1}\left(\mathrm{z}_{2}-\mathrm{y}\right)^{\mathrm{k}_{2}-1} \mathrm{dF}(\mathrm{x}, \mathrm{y})$
- 4-icv (in x) dominance ordering is equivalent to the poverty ordering $\mathrm{P}^{4}\left(\mathrm{z}_{\mathrm{x}}\right)=\mathrm{P}^{4,0}\left(\mathrm{z}_{\mathrm{x}}, \mathrm{y} _\right.$max $)$in x + SSD and TSD conditions at bounds
- 4-idircv dominance ordering is equivalent to the poverty ordering $\mathrm{P}^{4}\left(\mathrm{z}_{\rho}\right)$ in ρ
+ SSD and TSD conditions at bounds
- (3,1)-icv dominance ordering is equivalent to the poverty ordering $\mathrm{P}^{\mathrm{k}_{1}, 1}$
for all $\mathrm{z}_{\mathrm{x}} \in\left[0, \mathrm{x} _m a x\right]$ if $\mathrm{k}_{1}=3$ and $\mathrm{z}_{\mathrm{x}}=\mathrm{x} _m a x$ if $\mathrm{k}_{1}=1,2$; and $\mathrm{z}_{\mathrm{y}}=\mathrm{y}$ _max with $\mathrm{k}_{2}=1$
- $(2,2)$-icv dominance ordering is equivalent to the poverty ordering $\mathrm{P}^{\mathrm{k}_{1}, \mathrm{k}_{2}}$
for all $\mathrm{z}_{\mathrm{x}} \in\left[0, \mathrm{x} _m a x\right]$ if $\mathrm{k}_{1}=2$ and $\mathrm{z}_{\mathrm{x}}=\mathrm{x}_{\text {_ }}$ max if $\mathrm{k}_{1}=1$; and idem for k_{2} and y

5. Conclusion

- A new normative approach: Welfare Shock Sharing
- Normative interpretations of the signs of $4^{\text {th }}$ degree derivatives of utilities
- A new characterization for $U_{1112}<0$
- Necessary and Sufficient SD results for several classes of functions
- Equivalence with multivariate poverty orderings
- To finish: Empirical application
- To come: More dimensions and higher degree
- To come: Generalised polar stochastic dominance
- More on risk analysis

