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unequal than another when they have common arithmetic median out-

comes and the first can be obtained from the second by correlation-

increasing switches and/or median-preserving spreads. For the canon-

ical 2x2 case (with two binary indicators), we derive a simple opera-

tional procedure for checking ordinal inequality relations in practice.
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1 Introduction

It is widely agreed in the literature that a multi-dimensional view of individ-

ual well-being along the lines suggested by Sen (1985, 1993) is needed when

poverty, social welfare, and inequality comparisons are made. Alkire (2002),

Alkire and Foster (2011), and Alkire and Santos (2011) pursue this point

and helped form the Multidimensional Poverty Index (MPI), the United

Nations Development Programme (UNDP) introduced in its 2010 “Human

Development Report”. These are welcome innovations in a challenging area

of research and policy application.1

A persistent methodological challenge in the analysis of (multidimen-

sional) inequality is that outcomes are often ordinal in nature; i.e. the

outcomes are (partially) ranked in terms of better or worse, but there is

no natural measure for the distances between them. In recent years con-

siderable progress has been made in the development of methods based on

stochastic dominance theory for comparisons of multidimensional inequality

that are robust over broad classes of “utility” indices and aggregation rules

across dimensions of well-being.2 Gravel and Moyes (2006, 2011, 2012) char-

acterize the elementary redistributive operations that reduce inequality in

a two-dimensional model where one of the attributes is cardinally measur-

able. Their framework provides a method for making inequality comparisons

between distributions with common mean for the cardinal attribute and

identical marginal distributions for the ordinal attribute. Decancq (2012)

and Meyer and Strulovici (2012) study ordinal interdependence concepts for

comparisons of discrete multidimensional distributions that have identical

marginal distributions. A closely related line of literature deals with ro-

bust comparisons of poverty/social welfare (e.g. Atkinson and Bourguignon

1982; Bourguignon 1989; Duclos et al. 2006, 2007, 2011; Gravel et al. 2009;

Gravel and Mukhopadhyay 2010; Østerdal 2010; Arndt et al. 2012, among

1For general discussion of the case for multidimensional understanding of inequality

and poverty, see Grusky and Kanbur (2006) and Sen (2006).
2For surveys of traditional (cardinal) multidimensional inequality measures, such as

the various multidimensional generalizations of the Gini index and the Atkinson-Kolm-

Sen approach, we refer to Maasoumi (1999) and Weymark (2006). See also Savaglio (2006)

and Trannoy (2006) for broader discussions.
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others) where the latter two papers apply an ordinal multidimensional first

order dominance approach. However, ordinal inequality concepts for multi-

dimensional distributions (not necessarily having the same marginal means

or distributions) are yet to be developed.3

When data are ordinal in nature, use of a conventional income inequality

measure, such as the Gini index, is not meaningful since it requires that out-

comes are measured on a cardinal scale that reflects the relative desirability

of outcomes.4 Measures of dispersion for one-dimensional ordinal categori-

cal data have been developed since at least the early 1990’s, see, e.g., Blair

and Lacy (1996, 2000). Allison and Foster (2004) put forward a simple but

illuminating and intuitive model for robust comparisons of inequalities when

outcomes are categorical and ordinally ranked. The Allison-Foster frame-

work is a median-based dominance approach in which distribution  is more

unequal than distribution  whenever the two distributions have common

median and  is more spread out relative to the median than . As discussed

in Allison and Foster (2004), the median, rather than for instance the mean,

is chosen as the reference point since the median is the natural ordinally

invariant center of distribution. For empirical illustration, they provided

both first order dominance comparisons and ordinal inequality comparisons

of distributions of self-assessed health across states and regions of the United

States, and showed that the inequality comparison concept was both mean-

ingful and operational. A number of recent contributions have developed

related inequality measures based on dispersions from the median and pro-

vided further applications of these methods, e.g. Apouey (2007), Abul Naga

and Yalcin (2008), Madden (2010), Kobus and Miłós (2012), and Dutta and

Foster (2013).5

The aim of this paper is to introduce a median-based notion of inequality

for ordinal two-dimensional categorical data, with emphasis on the case of

3Kobus (2012) characterizes a class of multidimensional inequality indices for ordinal

data though.
4This means that outcomes are measured on a ratio-scale. We refer to Sen (1997) and

Lambert (2001) for definitions and discussion of the Gini index.
5Zheng (2011) introduces a new approach to rank and measure socioeconomic health

inequality with ordinal health data.
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binary indicators. Our concept is relevant for situations where well-being

is measured along two dimensions (attributes), and where only ordinal in-

formation about the desirability of outcomes is available. This means that

along each dimension outcomes can be ranked according to their desirability,

but nothing is assumed about the relative importance of attributes, com-

plementarity/substitutability relationships, and the relative importance of

levels within each attribute.6 Our concept extends the Allison-Foster frame-

work for assessing inequality of one-dimensional categorical distributions to

a two-dimensional one. Roughly speaking, in our model, distribution  is

more unequal than distribution , if the two distributions have a common

arithmetic median (i.e. they have a common ordinally invariant reference

point) and  can be obtained from  by certain “inequality-increasing ele-

mentary transformations” in population mass relative to the reference point.

Note that the arithmetic median is the vector of marginal medians (e.g. Hay-

ford 1902; Haldane 1948; Barnett 1976). It has been described as the only

reasonable multi-attribute generalization of the median concept when the

attributes are different in kinds, e.g. Haldane (1948) and Barnett (1976).

As in the Allison-Foster model, when the (arithmetic) medians differ for

two distributions they are incomparable inequality-wise. This tends to limit

applicability in cases with many dimensions and levels where it happens

less frequently that two given distributions have a shared median. Another

obstacle for empirical implementation is that it is in general difficult to check

if a given distribution is more unequal than another. Therefore, we focus in

this paper on the 2x2 case, where common arithmetic median outcome tend

to be the rule rather than the exception, and where an easily implementable

procedure for detecting inequality relations between empirical subpopulation

distributions can be derived.

The rest of the paper is organized as follows. In Section 2 we motivate,

illustrate and provide intuition. Section 3 contains general definitions and

a comparison of our approach to that of Allison and Foster (2004). Section

4 addresses the 2x2 case (i.e., the case of two binary outcome variables),

6For explorations of multidimensional poverty measurement in similar frameworks, see

for instance Duclos, Sahn, and Younger (2007) and Alkire and Foster (2008).
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and we develop a procedure for detecting inequality relations in practice.

Briefly, testing that one distribution is more unequal than another consists

of a comparison of medians, and, if a common median exists, verification

of a system of inequalities which depends on the location of the median.

The test requires straightforward calculations and can be carried out in a

spreadsheet. In Section 5 we apply our model to two-dimensional indicators

of childhood deprivation in Mozambique. Section 6 concludes.

2 An ordinal approach to bivariate inequality: il-

lustration and intuition

Suppose a person’s well-being can be measured using two 0-1 binary vari-

ables, so there are four possible outcomes. Let (0 0) denote the outcome

where both variables take the value 0, (1 0) the outcome where the first

variable takes the value 1 and the second the value 0, and so on. In the

figure below arrows point to better outcomes.

(0 0) → (1 0)

↓ & ↓
(0 1) → (1 1)

Outcome (0 0) is the worst and (1 1) is the best outcome. We assume it is

unknown which of the two intermediate outcomes (0 1) and (1 0) is better.

A population is characterized by how people are distributed among the four

outcomes. This can be illustrated as follows:

 :

0 1

0 2
16

4
16

1 4
16

6
16
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where 2
16
of the population has (0 0), 4

16
has (0 1) and (1 0) respectively,

and 6
16
has (1 1). Call this distribution  , and compare with distribution :

 :

0 1

0 4
16

2
16

1 2
16

8
16

Here  can be obtained from  by moving mass amounting to 1
8
from out-

come (0 1) to outcome (0 0) and by moving a similar amount from (1 0) to

(1 1) In other words,  can be obtained from  by a correlation-increasing

switch (Hamada 1974; Epstein and Tanny 1980; Tchen 1980; Boland and

Proschan 1988). As argued by Atkinson and Bourguignon (1982), Tsui

(1999), Atkinson (2003), Bourguignon and Chakravarty (2003), Decancq

(2011) and others, such a correlation-increasing switch intuitively increases

inequality. It provides a balanced movement of mass from two intermediate

outcomes to the two extremes that does not change the marginal distribu-

tions but increases interdependence. If a person experiences a bad outcome

in one of the dimensions of , the conditional probability that the other

outcome is also bad is higher for  than for  , so indeed it seems reasonable

to say that  is more unequal than  .7

For one population distribution to be obtained from another by a correlation-

increasing switch, it is required that the difference in mass between the two

distributions for the outcome (0 0) is exactly equal to the corresponding

difference for the outcome (1 1) Unless the populations (or number of ob-

servations) underlying the two distributions are very small this is only going

to happen in exceptional cases.

7Note that a correlation-increasing switch may move some mass toward the center of

the distribution (the median outcome). However, it will then simultanuously move an

equal amount of mass away from the center of the distribution, which overall results in a

more dispersed distribution.
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However, let us consider a third distribution :

 :

0 1

0 4
16

2
16

1 3
16

7
16

Obviously,  cannot be obtained from  or  by a correlation-increasing

switch. But  ,  and  all have the same arithmetic median in (1 1), i.e. a

median value of 1 in each of the two dimensions.8 If we regard the arithmetic

median as the natural center of the distributions then intuitively  is more

unequal than . Indeed, distribution  can be obtained from  by moving

population mass amounting to 1
16
from the median outcome (1 1) to (1 0):

that is,  can be obtained from  by a median-preserving spread (Allison

and Foster, 2004).

Accordingly, we will say that a distribution is ordinally more unequal

than another if it is possible to obtain the distribution from the other

through a sequence of correlation-increasing switches and/or median-preserving

spreads. In our example,  is ordinally more unequal than  since there

exists a distribution  such that  can be obtained from  through a

correlation-increasing switch and  can be obtained from  through a median-

preserving spread.

3 General formulation

Suppose that there are 2 attributes (dimensions). An outcome is an two-

dimensional vector  = (1 2) where each  is defined on an attribute

set  = {0  }  = 1 2. The set of outcomes is the product set

 = 1 ×2.

The statement  ≤  will mean that  ≤  for all , and    will

8As mentioned in the Introduction, the arithmetic median is the vector of marginal

medians and the natural multi-attribute generalization of the median concept when the

attributes are different in kind (e.g. Haldane, 1948; Barnett 1976). For geometric prob-

lems, like that of defining the geographical median for a population distributed on a plane

(or a sphere), a number of other median concepts exists, see Small (1990).
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mean that  ≤  for all  and  6= . A distribution is a real-valued

function  on  with
X
∈

() = 1 and () ≥ 0 for all  ∈ . Let 


denote the marginal distribution on  .

Let 

(


) denote the median of  on  .

9 The (arithmetic) median of

 is the vector () = (1(1)2(2)), of coordinate-wise medians.

We say that distribution  can be derived from distribution  by a bilat-

eral transfer (of mass between two outcomes), if there are outcomes   and

a non-negative scalar  such that () = () − , () = () +  and

() = () otherwise. If    the bilateral transfer is diminishing (i.e.

moves mass from a better to a worse outcome), if for some outcome  that

   ≤  or  ≤    it is directed away from  and if () = () it

is median-preserving. A median-preserving bilateral transfer directed away

from the median is a median-preserving spread (see Section 2 for an exam-

ple).

We say that  is derived from  by a correlation-increasing switch if we

can choose outcomes    such that  = ({min{1 1}min{2 2}) and
 = (max{1 2}max{2 2}), ()−() = ()−()  0 ()−() =
() − ()  0 and () = () otherwise (again, see Section 2 for an

example).

In the following, we define an inequality-increasing elementary transfor-

mation to be a correlation-increasing switch or a median-preserving spread.

If  can be derived from  by a finite sequence of inequality-increasing

elementary transformations, we say that  is ordinally more unequal than  ,

or, as an equivalent statement,  is ordinally more equal than . Formally, 

is ordinally more unequal than  if there are distributions  = 1 2   =

 where  +1 is obtained from   by an inequality-increasing elementary

transformation,  = 1   − 1. Note that the relation ’ordinally more

unequal’ is a partial order (i.e. reflexive, antisymmetric, and transitive)10

9To ensure a unique median value, we will define () as the smallest element  in

 such that


=1 () ≥ 1
2
.

10A distribution with 50% mass at one extreme outcome and 50% mass at the other

extreme outcome is the unique maximal element with respect to this relation (i.e. no

other distribution is more unequal). A distribution having all mass concentrated on one

outcome is clearly a minimal element (i.e. no other distribution is more equal). However,
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As illustrated by Allison and Foster (2004), it is often of interest to com-

plement (ordinal) comparisons of inequality with (ordinal) comparisons of

social welfare, see also Zheng (2008). In our ordinal framework, the nat-

ural criterion for comparison of social welfare is first order dominance.11

A population distribution  first order dominates population distribution

 whenever  can be obtained from  by iteratively moving population

mass from better to worse outcomes, i.e., if there are distributions  =

1 2   =  where  +1 is obtained from   by a diminishing bilat-

eral transfer  = 1  −1 Equivalently, any additive non-decreasing social
welfare function would give as least as much social welfare to  than to .12

Before proceeding, we compare these definitions and concepts with the

one-dimensional case put forward by Allison and Foster (2004). With  =

1 = {1  1}  = 1 and  = 1, define  () =
P

=1 () and  in a

similar way. Allison and Foster (2004) say that  has a greater spread than 

whenever () = () and () ≥  () for all   () and () ≤  ()

for all  ≥ (). For the one-dimensional case,  has greater spread than

 precisely if  is ordinally more unequal than  (as defined here). Also,

the general definition of first order dominance given here is equivalent to

the standard definition in the one-dimensional case. Thus, the definitions

presented here generalize those of Allison and Foster’s one-dimensional case.

4 Implementation of the 2x2 case

A central question is how to test if one distribution is ordinally more unequal

than another (i.e. has greater spread in an ordinally meaningful sense). For

two one-dimensional distributions  and  such testing is a straightforward

for  ≥ 2 it is possible to find minimal elements with mass at more than one outcome.
11First order dominance is also known as the usual (stochastic) order. For general

references on stochastic ordering theory, see Müller and Stoyan (2002) or Shaked and

Shanthikumar (2007).
12 It is worth mentioning that in the multidimensional context the term “first order

dominance” has been used with other meanings in the economics literature. In particular,

Atkinson and Bourguignon (1982) and subsequent literature have used this term for a less

restrictive stochastic dominance concept which corresponds to additional restrictions on

the social welfare function (also known as an orthant stochastic order in the stochastic

orderings literature).
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matter of checking whether 1 inequalities hold.
13 For the multidimensional

case (even the two-dimensional), checking if one distribution is more unequal

than another is more complicated. We focus in our empirical implementation

on the 2x2 case which can be dealt with in a tractable manner.

In this section, we assume that an outcome is a vector  = (1 2) where

each attribute  is defined on an attribute set  = {0 1},  = 1 2. Thus,
the outcome set is  = {0 1} × {0 1}. For an outcome  = (1 2) we use
the notation (1 2) for ().

4.1 Checking first order dominance relations

Let  and  denote distributions on. By application of Strassen’s Theorem

(Strassen 1965), it follows that  first order dominates  if and only if

the cumulative probability mass at  is smaller than or equal to that at 

for every lower comprehensive subset of outcomes. A lower comprehensive

subset  ⊆  holds the property that if an outcome is in the subset, then

all smaller outcomes are also included in that subset. That is, if  ∈  ,

 ∈  and  ≤  then  ∈ 

Thus, in the 2x2 case,  first order dominates  if and only if the following

four inequalities are satisfied: (0 0) ≥ (0 0) (0 0) + (0 1) ≥ (0 0) +

(0 1) (0 0) + (1 0) ≥ (0 0) + (1 0) and (0 0) + (1 0) + (0 1) ≥
(0 0) + (1 0) + (0 1).14

4.2 Checking ordinal inequality relations

We proceed next to present necessary and sufficient conditions for  being

ordinally more equal than  as defined in Section 2.

Correlation-increasing switches are median-preserving, so a necessary

condition  to be ordinally more unequal than  is that the two distributions

13See Allison and Foster (2004) for a detailed discussion of how this test can be nicely

visualized.
14Note that the Atkinson and Bourguignon (1982) definition of first order dominance

requires only that there is at least as much mass at  than at  for all lower rectangular

sets of outcomes. Thus, for the 2x2 case, it is not required that (0 0)+(1 0)+(0 1) ≥
(0 0)+(1 0)+(0 1). In general, the concepts differ greatly in the number of inequality

restrictions that are imposed.
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have common median.15 We can therefore rely on considering in turn each

of four possible cases of common median, and proceed as described below.

Proposition 1 (Ordinal inequality check for the 2x2 case) Let  = {0 1}×
{0 1} and let  and  be two distributions on . Then  is ordinally more

unequal than  if and only if one of the following six cases holds:

A1.  and  have common median (1 1) and  first order dominates 

A2.  and  have common median (0 0) and  first order dominates  .

B1.  and  have common median (1 1) and (1 0) ≥ (1 0), (0 1) ≥
(0 1), (1 1) ≤ (1 1), (1 1) − (1 1) ≤ min{(1 0) − (1 0) (0 1) −
(0 1)}

B2.  and  have common median (0 0) and (1 0) ≥ (1 0), (0 1) ≥
(0 1), (0 0) ≤ (0 0) (0 0) − (0 0) ≤ min{(1 0) − (1 0) (0 1) −
(0 1)}

C1.  and  have common median (1 0) and (1 0) ≤ (1 0), (0 1) ≤
(0 1), (1 1) ≥ (1 1), (0 0) ≥ (0 0), (1 0)−(1 0) ≥ (0 1)−(0 1)

C2.  and  have common median (0 1) and (0 1) ≤ (0 1), (1 0) ≤
(1 0), (1 1) ≥ (1 1), (0 0) ≥ (0 0), (0 1)−(0 1) ≥ (1 0)−(1 0)

The proof of Proposition 1 is given in Appendix A. The intuition behind

the conditions is discussed below.

The cases A1 and A2 are symmetric so we will only discuss A1. As men-

tioned in Section 4.1,  first order dominates  if and only if it is possible to

go from  to  by a finite sequence of diminishing bilateral transfers. Each

such bilateral transfer is a median-preserving spread (as shown formally in

the Appendix) and thereby an inequality-increasing elementary transforma-

tion.

The cases B1 and B2 are symmetric so we will only discuss B1. To

provide some intuition for the inequalities in B1, suppose that  does not

first order dominate  and  does not first order dominate  . Then, if 

15Suppose that  is derived from  by some correlation-increasing switch. For the case

 = {0 1} × {0 1}, any correlation-increasing switch can be conducted by means of two
bilateral transfers (of the same amount of mass) from (0 1) and (1 0) to the extreme

outcomes (0 0) and (1 1).
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is ordinally more unequal than  it is impossible to go from  to  via a

finite sequence of inequality-increasing elementary transformations without

making use of at least one correlation-increasing switch (because we would

then have first order dominance since the median is an extreme outcome

(1 1)). Thus, if  is ordinally more unequal than  then (1 0)  (1 0)

and (0 1)  (0 1), since otherwise it would be possible to go from 

to  without any correlation-increasing switches (because if a correlation-

increasing switch is involved, one of the intermediate outcome would re-

ceive at least as much probability mass from (1 1) as is moved to (1 1)

and hence only diminishing bilateral transfers are needed, a contradiction).

However, these two conditions are not sufficient for  being ordinally more

unequal than  . Roughly speaking, we need a condition ensuring that

all mass transferred to (1 1) in the process of moving from  to  can

be transferred from the intermediate outcomes (0 1) or (1 0) in connec-

tion with a correlation-increasing switch. This is precisely the condition

(1 1)− (1 1) ≤ min{(1 0)− (1 0) (0 1)− (0 1)}
The cases C1 and C2 are symmetric so we will only discuss C1.16 The

first inequalities ensure that  has at least as much mass at the intermediate

outcomes, and not more mass than at the extreme outcomes, than . The

last condition ensures that the difference in mass at the median outcome

(1 0) is no less than the difference in mass at the other intermediate outcome

(0 1). As verified formally in the Appendix, the conditions imply (and are

implied by) that  can be obtained from  by a correlation-increasing switch

and bilateral transfers of mass from (1 0) to (0 0) and (1 1) respectively.

The following illustrates how a concrete data set can be analyzed in the

present framework. For illustrative purposes, we highlight examples of all

the basic types of ordinal inequality relations that can occur in the 2x2 case

16 It is possible to show that A1 or B1 holds if and only if the distributions have common

median in (1 1) and  dominates  according to the first order dominance concept of Atkin-

son and Bourguignon (1982). Although the foundations of the Atkinson-Bourguignon

concept of first order dominance in terms of elementary operations has never been fully

established (see Moyes 2012, Footnote 13), it shows that our concept and the operation

involved is closely linked with the Atkinson-Bourguignon concept of first order dominance

for cases where the median takes an extreme value.
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(see Section 5.3).

5 Empirical illustration

In Mozambique, investment in schooling, health, and sanitation has in-

creased the level of human capital and indices of human development. While

this development has influenced living standards of both adults and children,

its impact on children is of particular interest. The acquisition of human cap-

ital in early childhood is imperative for future learning, earnings and health

status (UNICEF 2006). Large gaps in basic welfare goods during childhood

tend to persist, if not widen, the variation in human capital, productivity

and living standards throughout adulthood, see Strauss and Thomas (1995),

and Orazem and King (2007).

To address the above challenges voucher or cash transfer programmes

targeted at disadvantaged children have in recent year become more com-

mon.17 A general problem with such government transfer programmes is to

make sure that transfers are directed at the most disadvantaged children.

Efficient targeting of government resources require that administrators can

detect the most vulnerable groups. We illustrate how our model can be

used for examining inequalities within and between groups of Mozambican

children, concentrating on three key characteristics, rural-urban area of res-

idence, gender of head of household, and gender of the child.18 This results

in a total of eight categories of children that we compare with each other.

17The most famous of these initiatives is probably Mexico’s PRO-

GRESA/Oportunidades programme, which aims at increasing children’s school at-

tendance among poor families, by awarding grants to mothers conditional on school

enrolment. See Parker, Rubalcava and Teruel (2007) for further discussion and examples.
18Urban-rural area of residence is likely to have a significant impact on living standards

mainly due to the low population density of rural areas, which makes supply of high

quality public services more costly. Children living in female headed households are more

likely than other children to fall below the poverty line primarily because women’s wages

and education tend to be lower than men’s. Buviníc and Gupta (1997) review literature

relating female headship and poverty. However, as Handa (1996) observes, female headed

households are also likely to spend a larger share of their income on improving children’s

human capital. Finally, households may discriminate based on gender of the child. For

example in Mozambique, it is not uncommon for especially rural families to invest more

in the education of boys as compared to girls (UNICEF, 2006).
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5.1 Data and summary statistics

We apply the model to the Mozambican Demographics and Health Sur-

vey from 2003 (DHS 2003).19 This is a nationally representative data set

that includes detailed information on childhood poverty. We focus on three

indicators for severe deprivation in sanitation, health, and education respec-

tively (cf. Gordon et al., 2003). Sanitation deprivation indicates lack of

access to a toilet of any kind, including communal toilets or latrines. Health

deprivation is an indicator for pre-school-aged children (under five years)

who have never been immunized or who have recently been ill with diarrhea

but did not receive medical attention. Education deprivation is an indica-

tor for school-aged children (between seven and eighteen years) who have

never been to school. We combine these into two 2x2 indicators of child-

hood poverty for school-aged and pre-school-aged children respectively. A

detailed description of the survey is given in UNICEF (2006).20

Table 1 summarizes how indicators of childhood poverty are distributed

among the four possible outcomes. The top panel lists the distribution of

sanitation and education (for school-aged children), and the lower panel lists

the distribution of sanitation and health (for pre-school-aged children), each

by area of residence, gender of head of household, and gender of the child.

For example, the first row of the lower panel shows that among pre-school-

aged girls in rural, male-headed households 188% live with poor sanitation

and under poor health conditions, 444% have poor sanitation but adequate

health, 48% have good sanitation but poor health, and the rest, 32%, have

both good sanitation and good health conditions.21

19Recently, Arndt et al. (2012) provide an alternative implementation of the multi-

dimensional first order dominance approach with an application to comparisons of child

poverty in Vietnam and Mozambique between groups and over time.
20Lindelow (2006) studies socioeconomic health inequalities in Mozambique using the

concentration index. His study is based on income and health data from the 1996-1997

household survey.
21We have weighted these shares by survey sample weights.
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Area, 
Gender of household head, 
Gender of child

(0,0) (0,1) (1,0) (1,1) Median # of obs.

Rural, Male, Girl 27.7 34.5 10.3 27.6 (0,1) 3716
Rural, Male, Boy 16.3 41.3 9.4 33.0 (0,1) 4010
Rural, Female, Girl 21.6 38.4 8.7 31.2 (0,1) 1223
Rural, Female, Boy 19.2 41.0 8.1 31.7 (0,1) 1348
Urban, Male, Girl 6.0 9.9 7.2 76.9 (1,1) 2858
Urban, Male, Boy 5.0 13.1 5.3 76.6 (1,1) 2912
Urban, Female, Girl 8.2 9.0 5.3 77.5 (1,1) 1140
Urban, Female, Boy 7.2 11.2 4.2 77.4 (1,1) 1025

Rural, Male, Girl 18.8 44.4 4.8 32.0 (0,1) 2262
Rural, Male, Boy 19.2 44.8 4.7 31.3 (0,1) 2288
Rural, Female, Girl 13.9 47.9 4.7 33.6 (0,1) 580
Rural, Female, Boy 15.7 44.9 3.7 35.6 (0,1) 598
Urban, Male, Girl 2.6 18.8 7.6 71.0 (1,1) 1215
Urban, Male, Boy 2.9 18.2 8.1 70.9 (1,1) 1156
Urban, Female, Girl 2.0 19.5 3.2 75.3 (1,1) 382
Urban, Female, Boy 3.7 16.7 8.5 71.1 (1,1) 341

Note:  The f irst element, i , in vector (i,j ) indicates sanitation deprivation. The second element, j , 
indicates education deprivation in the top panel and health deprivation in the bottom panel. i,j  = 0 is 
deprivation, i,j  = 1 is no deprivation.
Source:  Authors' calculations from DHS 2003.

(Sanitation deprivation, Health deprivation)

(Sanitation deprivation, Education deprivation)

Table 1: Percentages of children’s two-dimensional living standards.

5.2 Results from pairwise comparisons

Table 2 shows first order dominance and ordinal inequality relations be-

tween all distributions (within each panel) in Table 1. A number 1 in an

entry indicates that the row distribution first order dominates the column

distribution, while 0 indicates no first order dominance. Capital letters indi-

cate ordinal inequality relations of the types specified in Proposition 1. An

asterisk means that a bootstrapping test indicates that the groups are signif-

icantly different (for more details on this bootstrap procedure see Appendix

A.2). Note that first order dominance might be compatible with ordinal

inequality relations (of the type A), yet these cases do not occur in the data

shown, while ordinal inequality relations of type B and C are present. We

highlight these cases below.
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Type B inequalities are those with extreme common medians, in (0 0)

or (1 1), but where none of the distributions first order dominates the other.

For illustration, compare the distribution for urban boys in female-headed

households (last row in upper panel of Table 1) with the distribution for

urban boys in male-headed households (third to last row in upper panel of

Table 1). None is first order dominating the other, but the latter is more

equal. To see this, starting with the distribution for urban boys in male-

headed households, use a correlation-increasing switch of 11 and then a

median-preserving spread of 03 and 08 from (1 1) and (0 1) to (0 0). This

results in the distribution for urban boys in female-headed households .

Type C inequalities are those where the median is non-extreme and

where there is no first order dominance. An illustration of type C ordi-

nal inequality can be seen from comparing the distribution for girls in rural

female-headed households (third row in lower panel of Table 1) to the dis-

tribution of boys in similar households (fourth row in lower panel of Table

1). Here, the girls are more equally distributed than the boys. To see this,

starting with the distribution for the girls, apply first a correlation-increasing

transfer of 09 and then a median-preserving spread of 09 and 11 from (0 1)

to (0 0) and (1 1), which gives the distribution for boys. Note that because

of rounding, the numbers do not match exactly.
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Area, 
Gender of household head, 
Gender of child Median

Rural, 
Male, 
Girl

Rural, 
Male, 
Boy

Rural, 
Female, 

Girl

Rural, 
Female, 

Boy

Urban, 
Male, 
Girl

Urban, 
Male, 
Boy

Urban, 
Female, 

Girl

Urban, 
Female, 

Boy
Rural, Male, Girl (0,1) 0 0 0 0 0 0 0
Rural, Male, Boy (0,1) 1* 1* 1* 0 0 0 0
Rural, Female, Girl (0,1) 1* 0 0 0 0 0 0
Rural, Female, Boy (0,1) 1* 0 0 0 0 0 0
Urban, Male, Girl (1,1) 1* 1* 1* 1* 0 0B* 0
Urban, Male, Boy (1,1) 1* 1* 1* 1* 0 0 0B*
Urban, Female, Girl (1,1) 1* 1* 1* 1* 0 0 0
Urban, Female, Boy (1,1) 1* 1* 1* 1* 0 0 0

Rural, Male, Girl (0,1) 1 0 0 0 0 0 0
Rural, Male, Boy (0,1) 0 0 0 0 0 0 0
Rural, Female, Girl (0,1) 1 1* 0C* 0 0 0 0
Rural, Female, Boy (0,1) 1* 1* 0 0 0 0 0
Urban, Male, Girl (1,1) 1* 1* 1* 1* 0 0 0
Urban, Male, Boy (1,1) 1* 1* 1* 1* 0 0 0
Urban, Female, Girl (1,1) 1* 1* 1* 1* 0 0 0
Urban, Female, Boy (1,1) 1* 1* 1* 1* 0 0 0

Source:  Authors' calculations from DHS 2003.

(Sanitation deprivation, Health deprivation)

(Sanitation deprivation, Education deprivation)

Note:  The number 1 indicates that the row  distribution f irst order dominates the column distribution. The letters 
B and C indicate that the row  distribution is ordinally more equal of type B or C respectively cf. Proposition 1. 
We conducted tests of signif icance for f irst order dominance and ordinal inequality by using the permutation 
bootstrap method. * indicates a signif icant test statistic at the 5% level.

Table 2: First order dominance and ordinal inequality relations among

groups of children

For the eight groups of pre-school-aged children, there are 21 first order

dominances and 2 ordinal inequality relations among the 28 different pairs

of groups compared. For school-aged children, we observe 21 first order

dominances and 1 ordinal inequality relation. From Table 2 it emerges that

urban groups are better off than rural groups. This is not so surprising.

However, it also emerges that there are more first order dominances between

rural groups than between urban groups, indicating more between-group

inequality in the rural areas than in the urban areas. In particular, school-

age boys in rural male headed households are better off than any other

rural group. Moreover, there is more within-group inequality for school-age

children in urban female headed households than in the corresponding male
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headed households. These findings deserve attention in policy debates.

6 Conclusion

In this paper we have developed an ordinal concept of multi-dimensional

inequality, building on the Allison and Foster (2004) framework for com-

paring inequalities with one-dimensional categorical data. To illustrate how

our model can be applied in the 2x2 case we compared poverty distributions

of pre-school- and school-aged children from the DHS data in Mozambique.

Such data is available for a large number of countries across the developing

world, meaning that potentially interesting comparisons are possible.

For these indicators, we find that first order dominance occur rela-

tively frequently while ordinal bivariate inequality relations are less frequent.

Whether this is because ordinal inequality relations generally are “rare” em-

pirically or whether it is due to the chosen indicators of child poverty can-

not be established with the data in hand. However, the example shows that

while instances of ordinal bivariate inequality relations may be relatively un-

common, they do exist empirically. Moreover, our indicators of sanitation,

health and education by area of residence, gender of the household health,

and gender of the child provide insights into how targeting of for example

cash transfer programmes presently under consideration by the Mozambican

government should be pursued.

In sum, we have shown that it is possible to develop a meaningful and

intuitive concept of ordinal bivariate inequality. We have also demonstrated

how it can be applied in the 2x2 case. Future research will be required to

explore how to deal with variations of the concept and more general cases.

In particular, an important generalization would be to provide an ordinal

inequality check procedure that applies to general bivariate problems. Pro-

viding such a general procedure will however not be straightforward since the

many possibilites of combining correlation-increasing switches and median-

preserving spreads in various sequences will be to complex to analyze directly

as in the proof of Proposition 1, and thus a deeper understanding of what

can be obtained from these inequality-increasing elementary operations is
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needed. It is also possible to generalize the definitions and concepts to an

arbitrary finite number of dimensions, although the correlation-increasing

switch concept does not generalize in a straightforward manner to more

than two dimensions (Decancq 2012), and checking inequality would be even

more challenging. Finally, the restriction that  and  have common me-

dians for ordinal inequality relations to be viable could possible be relaxed.

See Abul Naga and Yalcin (2010) for an exploration along these lines for the

one-dimensional case.

A Appendix

A.1 Proof of Proposition 1

We will make use of the following lemma which applies to the general case.

Lemma A Suppose that  is obtained from  by a sequence of bilateral

transfers directed away from () and () = (). Then each of these

bilateral transfers is median-preserving (i.e. is a median-preserving spread).

Proof of Lemma A: Define the sets (()) = { ∈ | ≤ ()} and
(()) = { ∈ |() ≤ } Then  is obtained from  by a sequence

of bilateral transfers of the following four kinds: from () to outcomes in

the sets (())\{()} and (())\{()} respectively, and bilateral
transfers directed away from () within the sets (())\{()} and
(())\{()} respectively

Order the bilateral transfers in the sequence with the numbers 1 2 

etc., such that we first have all the bilateral transfers directed away from

() within (()) and second all the bilateral transfers directed away

from () within (())

Suppose that the bilateral transfers 1 2  − 1 are median-preserving,
but bilateral transfer  fails to be median-preserving. Let  denote the new

median following bilateral transfer .

If bilateral transfer  is within (()) we have   () since each

bilateral transfers in (()) is diminishing. In particular, for the median e
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resulting after the last bilateral transfer within (()) we have e ≤  

(). However, the remaining bilateral transfers cannot move the median

back to() since they are all within (()), contradicting() = ().

If bilateral transfer  is within (()) for the new median  we have

()  , since each bilateral transfer in (()) is the reverse of a dimin-

ishing transfer (i.e. moving mass from worse to better outcomes). Hence,

for the median e resulting after the last bilateral transfer within (())

we have ()   ≤ e, contradicting () = (). ¤

We are now ready to prove Proposition 1. As mentioned prior to the

statement of Proposition 1, a shared median is a necessary condition for

one distribution to be ordinally more unequal than another. We proceed by

showing that for each case of common median, the relevant sets of inequali-

ties stated in Proposition 1 are indeed necessary and sufficient for an ordinal

inequality relation to hold. We focus on the case() = () = (1 1) (Case

1) and the case () = () = (1 0) (Case 2). The case () = () =

(0 0) is symmetric to Case 1 and the case() = () = (0 1) is symmetric

to Case 2.

In the proof of Proposition 1, a pseudo-distribution is defined as a real-

valued function  on  with
X
∈

() = 1. A pseudo-distribution  is thus

a distribution if () ≥ 0 for all  ∈ .

Case 1: () = () = (1 1)

For the inequalities in case A1 in Proposition 1 recall that  first order

dominates  if and only if it is possible to go from  to  by a finite se-

quence of diminishing bilateral transfers. By Lemma A, each such bilateral

transfer is a median-preserving spread and thereby an inequality-increasing

elementary transformation. Thus, A1 implies that  is ordinally more un-

equal than  Conversely, if  is ordinally more unequal than  and we can

go from  to  by a finite sequence of diminishing bilateral transfers using

no correlation-increasing switches then A1 is satisfied.

Now, we claim that if  is ordinally more unequal than  and if  is not

first order dominated by  then it is possible to obtain  from  from a
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sequence of inequality-increasing elementary transformations that involves

only a single correlation-increasing switch and no bilateral transfers from

the outcome (1 1) to other outcomes.

We first verify the last part of the claim, i.e. we show that no bilateral

transfers from (1 1) to other outcomes are required. For this, consider a

given sequence of inequality-increasing switches (leading from  to ) that

contains a bilateral transfer of the amount  from (1 1) to another outcome

 We assume, without loss of generality, that  = (0 1). (If  = (0 0) then

we can split the bilateral transfer up into two nested bilateral transfers,

one from (1 1) to (0 1) and one from (0 1) to (0 0); the case  = (1 0) is

symmetric to the one treated here and hence can be omitted).

As noted earlier, we know that the sequence contains at least one correlation-

increasing switch (since if otherwise  would first order dominate ). Now,

pick an arbitrary correlation-increasing switch from the sequence, and let 

denote the amount of mass moved from each of the outcomes (0 1) and (1 0)

to (0 0) and (1 1) respectively. We can then decompose this correlation-

increasing switch into two bilateral transfers: a bilateral transfer of the

amount  from (0 1) to (1 1) and a bilateral transfer of the amount  from

(1 0) to (0 0). We consider two cases: (a)  ≥ , and (b)   .

(a) Replace the bilateral transfer from (1 1) to (0 1) of the amount 

with a bilateral transfer of the amount  from (1 0) to (0 0), and reduce

the amount of mass transferred between each pair of outcomes from  to

− . Note that the amount of mass eventually allocated to each outcome

remains the same.

(b) Replace the correlation-increasing switch (which moves the amount

 between each pair of outcomes) with a bilateral transfer of the amount 

from (1 0) to (0 0), and reduce the size of the bilateral transfer from (1 1)

to (0 1) to −. Again, note that the amount of mass eventually allocated
to each outcome remains the same.

Proceeding in this way until no bilateral transfers from (1 1) to other

outcomes remain, we can eliminate all bilateral transfers from (1 1) to other

outcomes. Note that we have not shown (and it is not needed for our ar-

gument) that after each elimination of some bilateral transfer from (1 1)
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to another outcome, the resulting sequence of pseudo-distributions consists

entirely of distributions. It is sufficient to observe that when all bilateral

transfers from (1 1) to other outcomes have been eliminated, what remains

is a sequence of correlation-increasing switches and/or bilateral transfers

from (0 1) and/or (1 0) to (0 0). For this sequence, it is clear that each

intermediate pseudo-distribution is a distribution. Moreover, the transfor-

mations (i.e. correlation-increasing switches and/or bilateral transfers from

(0 1) to (0 0) and from (1 0) to (0 0)) can be arranged in an arbitrary order

and we can obtain  from  by a single operation of each type. This proves

our claim.

From these observations we get the following: Suppose that  does not

first order dominate . Then  is ordinally more unequal than  if and only

if the following 3 inequalities are satisfied: (1 0) − (1 0) ≥ 0 (0 1) −
(0 1) ≥ 0 and (1 1) − (1 1) ≤ min{(1 0) − (1 0) (0 1) − (0 1)}.
Note that in conjunction with the assumption that  does not first order

dominate , the 3 inequalities imply that (0 0)  (0 0) (i.e. with strict

inequality) From this observation it follows that the 3 inequalities are both

necessary and sufficient: The three inequalities are necessary, since if one of

them were violated, clearly we could not get  from  by a single correlation-

increasing switch and/or bilateral transfers from (0 1) and/or (1 0) to (0 0).

To verify that the conditions are sufficient, we give the following constructive

argument: Suppose that the conditions are satisfied. Let  = (1 1) −
(1 1). Given  , let b be the distribution obtained from a correlation-

increasing switch of the amount  (where  is transferred from (0 1) to

(0 0) and  is transferred from (1 0) to (1 1)) Thus, b(1 1) = (1 1)b(0 1) ≥ (0 1) b(1 0) ≥ (1 0) This means that  can be obtained fromb by diminishing bilateral transfers from (0 1) and/or (0 1) to (0 0), and

we are done.

Case 2: () = () = (1 0).

Note that if () = () = (1 0) and if  is ordinally more unequal

than  then  can be obtained from  by a finite number of correlation-

increasing switches (from (1 0) and (0 1) to (1 1) and (0 0)) and bilateral
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transfers from (1 0) to the extreme outcomes (1 1) and (0 0). Regardless

of how these correlation-increasing switches and bilateral transfers are or-

dered, each intermediate pseudo-distribution is a distribution. Thus, a sin-

gle correlation-increasing switch is enough (since all correlation-increasing

switches can be amalgamated into a single correlation-increasing switch and

still each intermediate pseudo-distribution is a distribution). In particular,

we can obtain  from  in three steps, ordered as follows: (1) A correlation-

increasing switch, (2) A bilateral transfer from (1 0) to (0 0) and (3) A

bilateral transfer from (1 0) to (1 1).

From these observations, we can show that  is ordinally more unequal

than  if and only if the 5 inequalities of case C1 hold: (1 0) ≤ (1 0),

(0 1) ≤ (0 1), (1 1) ≥ (1 1), (0 0) ≥ (0 0), and (1 0) − (1 0) ≥
(0 1)− (0 1)

Necessity of the first four inequalities is straightforward. The fifth in-

equality (1 0) − (1 0) ≥ (0 1) − (0 1) must hold since the only way

that mass can be transferred away from (0 1) is by means of a correlation-

increasing switch and thus at least the same amount is going to be trans-

ferred away from (1 0). For sufficiency, we give the following constructive ar-

gument: Suppose that the 5 inequalities hold. Let  = (0 1)− (0 1). De-

fine the distribution b by b(0 1) = (0 1)− b(1 0) = (1 0)− b(0 0) =
(0 0) +  and b(1 1) = (1 1) +  Thus, b is obtained from  by a

correlation-increasing switch. Then b(0 1) = (0 1), b(0 0) ≥ (0 0)b(0 0) ≥ (0 0) and b(1 0) ≥ (1 0). Thus,  can be obtained from b
by bilateral transfers from (1 0) to (0 0) and/or (1 1) and we are done.

A.2 Bootstrapping

Data is a sample of a larger population, so testing whether two sample groups

are genuinely distinct, accounting for sample uncertainty, is of interest. We

employ a bootstrap procedure which can be interpreted as testing a null-

hypothesis of equality of two distributions against an alternative hypothesis

of arbitrary distributions.

Define ( ) = min{(0 0)−(0 0) (0 0)+(0 1)−(0 0)−(0 1)
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(0 0)+(1 0)−(0 0)−(1 0) (0 0)+(1 0)+(0 1)−(0 0)−(1 0)−
(0 1)}. Then,( ) ≥ 0 if and only if  first order dominates . The func-
tion  is useful for testing statistical significance of first order dominance re-

lations. Following common convention, the null-distribution is generated by

merging the observations from the two groups. From the null-distribution,

two new samples are generated (drawing randomly with replacement) cor-

responding in size to the original two samples, and the test statistic  is

calculated. Repeating this procedure 1000 times, we obtain a distribution

over the test statistic consistent with the null-hypothesis, which we then

compare with the test statistic of the original sample.22 Asterisks in Table

2 indicate significance at the five percent level, meaning that the observed

value of  is larger than the 95th percentile of its bootstrapped distribu-

tion (indicating that the two groups are genuinely distinct).23 In the case

of ordinal inequality (without the presence of first order dominance) as the

bootstrapped test statistic we use the minimum function over the appropri-

ate differences induced by the inequalities as specified in type A, B, or C in

Proposition 1.

An alternative null-hypothesis, discussed by Howes (1993), Kaur et al.

(1994) and Dardanoni and Forcina (1999) and more recently by Davidson

and Duclos (2006) in the context of one-dimensional dominance of first and

higher order, is non-dominance (including exact equality of distributions)

against the alternative of strict dominance. This means that first order

dominance is rejected unless there is strong evidence in its favor. A similar

kind of test could be envisioned for the ordinal inequality relations. In order

to perform such tests in a multidimensional framework, we would have to

determine a “least favorable case”; that is, a null-distribution consistent

with the null-hypothesis that makes the observed distributions as plausible

22We refer to Efron and Tibshirani (1993, ch. 16) for a general discussion of the boot-

strap approach to hypothesis testing.
23Robertson, Wright and Dykstra (1988) and Bhattacharya and Dykstra (1994) develop

a test for equality of multivariate distributions against an alternative of first order dom-

inance. We do not discuss this approach here. For continuous-variable models, methods

for testing multidimensional first and higher order dominance have been developed by

Crawford (2005), Duclos et al. (2006), McCaig and Yatchew (2007) and Anderson (2008).
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as possible. We conjecture that the least favorable case in this situation is,

in fact, a case of equal distributions, and that it is valid to interpret our

bootstrap procedure along this line of reasoning. A detailed exploration of

these subtle econometric issues is beyond the scope of the present paper.
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