What drives female labor force participation?
Comparable micro-level evidence from eight developing and emerging economies

Stephan Klasen¹,³, Tu Thi Ngoc Le¹, Janneke Pieters²,³, Manuel Santos Silva¹

¹University of Göttingen
²Wageningen University
³IZA

WIDER Development Conference, Sept 11, 2019
Motivation

• In the last two decades, in the developing world:
 ▶ rising female education,
 ▶ declining fertility,
 ▶ economic growth,

• favorable background for rising FLFP rates everywhere.
Female labor force participation rates, age 15+

Figure 1: Source: ILO, modeled estimates
Puzzle

- Klasen and Pieters (2015) on India: “Against this background, it is puzzling to see that the reported female labor force participation rate in urban India has stagnated at around 18 percent since the 1980s.”
- Schaner and Das (2016) on Indonesia: “Why, in the face of so much change, has Indonesian women’s labor force participation remained so stagnant?”
- Majbouri (2018) on MENA region: “Fertility and the Puzzle of Female Employment in the Middle East”
- Gasparini and Marchionni (2015): in LA, slowdown in the growth of female labor supply since the 2000s
- etc...
What we do

We use comparable microdata from 8 low and middle-income countries, covering the period 2000–2014, to ask:

1. How are women’s (and their households’) characteristics associated with FLFP, and what are the key commonalities and differences across countries?
2. What drives FLFP changes over time within countries?
3. What explains differences in FLFP rates between countries and how has this changed over time?
How we do it

1. We estimate FLFP models for each country and year,
2. We decompose changes in FLFP over time for each country,
3. We decompose gaps in FLFP between countries.
Our contribution

- richer data than in cross-country analyses → heterogeneity across space and time,
- unified empirical framework → direct comparison between countries and over time,
- robust FLFP correlates over large samples and several periods.
Empirical model

- We follow the specification of Klasen and Pieters (2015):
- Population: *married* women of ages 25-54 living in *urban* areas.
- Probit model:

\[
P(LFP_{ict} = 1) = \Phi \left(\alpha_{ct} + \sum_{E} \beta_{ct} D_{ict}^E + X_{ict} \gamma_{ct} + \delta_{rct} \right), \quad (1)
\]
Explanatory variables

- D_i^{Ect}: woman’s education attainment dummies.
- X_{ict} - individual and household level:
 - age, age2,
 - ethnic or religious group,
 - per capita household income excluding the woman’s earnings (log),
 - education attainment of household head,
 - at least one male household member has wage employment (dummy),
 - number of children 0–2, 3–5, boys 6–14, girls 6–14.
- δ_{rct} - region fixed effects.
Interpretation

- reduced-form correlates,
- not causal, not structural (no own-wage effects),
- supply-side focus,
- (local) demand conditions captured by regional fixed effects.
Data

- Large scale repeated cross-sectional surveys for:
- Bolivia, Brazil, India, Indonesia, Jordan, South Africa, Tanzania, Vietnam,
- 32 surveys, ~ 800,000 urban married women (prime-age),
FLFP (prime-age) vs. income, 2014
Result 1

- No universal relationship between a woman’s education and her LFP status:
- strong, positive, and linear in Brazil and SA,
- U- or J-shape in India, Indonesia, and Jordan,
- Mixed in Bolivia, Tanzania, and Vietnam.
Average marginal effects of own education: Brazil
Average marginal effects of own education: India

![Graph showing average marginal effects for different education levels in India in 1999 and 2011. The graph includes error bars for 95% confidence intervals for each education level.](image)
Average marginal effects of own education: Vietnam

![Graph showing the average marginal effects of own education for Vietnam in 2002 and 2014. The graph includes data points for different levels of education: < Prim, Primary, Secondary, High school, Tertiary. The bars represent the 95% confidence intervals for each level of education in 2002 and 2014.](image)
Result 2

- The negative effect of fertility is stronger in richer countries.
Average marginal effect of young children: Brazil

![Average marginal effect graph]

- **Children 0–2**: Average marginal effect for children aged 0–2 years.
- **Children 3–5**: Average marginal effect for children aged 3–5 years.
- **Boys 6–14**: Average marginal effect for boys aged 6–14 years.
- **Girls 6–14**: Average marginal effect for girls aged 6–14 years.
Average marginal effect of young children: Tanzania

Average marginal effect

Year
Children 0−2 95% CI
Children 3−5 95% CI
Boys 6−14 95% CI
Girls 6−14 95% CI

-0.1 -0.05 0 0.03

2000 2006 2014

• Children 0–2 —— 95% CI
• Children 3–5 ———— 95% CI
• Boys 6–14 ———— 95% CI
• Girls 6–14 ———— 95% CI
Result 3

- Household circumstances lose their grip on FLFP in richest countries: Brazil and SA.
- Negative household income effects very strong in India, Indonesia, and Bolivia,
- Same for household head education.
Average marginal effect of log income: Indonesia

Figure 2: Notes: income is the household per capita earnings from main job excluding woman’s own earnings.
Average marginal effect of log income: South Africa

Figure 3: Notes: income is the household per capita earnings from main job excluding woman’s own earnings
Robustness

Correlates are robust to:

- PSU fixed effects (Brazil, Bolivia, SA, Tanzania),
- trends in marriage rates and urbanization,
- controlling for rural-urban migration directly (Tanzania) and indirectly (Brazil, Bolivia).

Details
Within-country decompositions: results

Explained (composition effect) vs. unexplained (coefficients and unobservables) changes in FLFP:

1. composition effect explains FLFP changes relatively well in India, Brazil, and Jordan,
2. coefficients and unobservables account for most of the change in Bolivia, Indonesia, and Vietnam,
3. composition and unexplained term cancel each other out in South Africa,
4. results depend on the choice of coefficients in Tanzania.
Composition effect vs. unexplained term
Within-country decompositions: results

Contribution of variable groups:

1. rising female education and falling fertility contribute positively everywhere,
2. but the magnitude of these contributions varies across countries,
3. in all but richest 3 countries (Jordan, SA, Brazil) positive education and fertility contributions are offset by rising household income,
4. other factors contribute only marginally.
Contribution of variable groups

The diagram illustrates the contribution of variable groups for different years and countries. Each bar represents a variable category, with colors indicating different countries and years.

- **Tanzania**: First year and last year contributions are shown.
- **Bolivia**: Similar contribution pattern as Tanzania.
- **India**: Contributions are relatively low across different years.
- **South Africa**: Contributions show a notable increase from the first to the last year.
- **Vietnam**: Contributions are significant, with a slight decrease from the first to the last year.
- **Jordan**: Contributions are variable, with a peak in the last year.
- **Brazil**: Contributions are high and consistent across years.
- **Indonesia**: Contributions are moderate and consistent across years.

Variable Categories:
- **Own education**
- **Children**
- **Log income**
- **Hh head educ**
- **Male salaried emp.**
- **Age**
- **Pop group**
- **Region dummies**
- **Survey waves**

The bars are color-coded to differentiate between countries and years, with a legend provided for reference.
Between-country decompositions

- Brazil’s coefficients as reference,
- decompose FLFP gap of each country *viz a viz* Brazil,
- decompose gaps around 2000, and around 2014.
Between-country decompositions: results

1. Covariates cannot explain FLFP gaps between countries,
2. for some countries, the composition effect even has the “wrong” sign,
3. coefficients and unobservables account for the bulk of FLFP variation between countries.
A thought experiment

• Imagine there is a single, fictional, labor market, where:
 1. all women face Brazil’s coefficients and unobservables, irrespective of their country origin,
 2. but, otherwise, each woman has her own observable characteristics as given in the data.

• What would be the FLFP rates in this “Brazilian”-like market?
“Brazilian”-like labor market (c. 2014)

Real FLFP and Simulated FLFP at Brazil’s coefficients.
Conclusion

- Participation-returns to women’s *own characteristics* and *family circumstances* differ substantially across countries,
- In fact, heterogeneity in returns to these characteristics explains most of the between-country differences in participation rates.
Policy message

- Economic growth alone or further improvements of women’s labor market characteristics $\not\Rightarrow$ FLFP rates $\uparrow\uparrow$,
- *unless*: removal of barriers and constraints to female employment both at the household and at the labor market level in each country.
Thank you for your attention
Sample selection bias

• Sample composition effect due to trends in:
 1. urbanization rates
 2. marriage rates

• problem if selection into urban areas and marriage is correlated with labor force attachment.

Solution (following Blau and Kahn 2007):

• estimate parsimonious probit models to predict urban and marriage probabilities (age, age2, education, region, children)

• create “artificial” samples with constant urbanization and marriage rates by excluding the women with the lowest urban and marriage propensity.
Selection bias in the education

• Massive expansion in education attainment in some countries,
• Rising education levels in our 25-54 group: more educated younger cohorts replacing less educated older cohorts.
• If the older cohorts were positively selected on education then, the decreasing AMEs for secondary and tertiary education could be due to a decline in this positive selection over time.

Our solution (following Klasen and Pieters 2015):
• Estimate an upper bound on this selection effect
• By weighting the AMEs of the first period by the changes in the distribution of education attainment
Distribution of educational attainment: example
South Africa

2014

1995

< Prim Primary < Sec Secondary Tertiary
Selection into education

Estimated: India 2011, Indonesia 2014, SA 2014

Reweighted: India 2011, Indonesia 2014, SA 2014

Manuel Santos Silva FLFP: micro evidence
Decomposition analysis for nonlinear models

- Fairlie’s (2006) extension of the Oaxaca-Blinder decomposition analysis,
- Groups: A, B (two years, or two countries)
- Decomposition at group A’s coefficients:

 \[\overline{LFP}_B - \overline{LFP}_A \approx \left[\sum_{N_B} \frac{\Phi(X_B \hat{\beta}_A)}{N_B} - \sum_{N_A} \frac{\Phi(X_A \hat{\beta}_A)}{N_A} \right] + \left[\sum_{N_B} \frac{\Phi(X_B \hat{\beta}_B)}{N_B} - \sum_{N_B} \frac{\Phi(X_B \hat{\beta}_A)}{N_B} \right], \]

 \[(2) \]

- Equally valid: decomposing at group B’s coefficients.
- We show results using both coefficient vectors (A and B).