Inequality and growth: a review on a great open debate in economics

Enea Baselgia and Reto Foellmi*

January 2022
Abstract: What is the relationship between inequality and growth? This question has occupied and fascinated social scientists for more than a century. This article critically reviews the recent empirical and theoretical literature on the complex interplay between inequality and economic growth. Inequality might come in many forms: (top) incomes, wages, wealth, land, or opportunities. At the same time, growth performance could be measured as average growth rates, variability of growth, or the potential for growth to ‘take off’. We consider causality running from inequality to growth; hence, the Kuznets hypothesis is only touched on in passing. The empirical literature estimating the effect of inequality on growth has produced a wide range of results, precluding clear-cut conclusions on the inequality–growth relationship. Consequently, it remains central to understand the underlying economic causes and channels through which (different aspects of) inequality can promote or hamper economic growth. This review aims to provide a broad overview of the contemporary results and an outline for prospective empirical and theoretical work.

Key words: economic growth, inequality, redistribution, theory and evidence

JEL classification: D30, O10, O31, O40

Acknowledgements: This article has been prepared for the ‘Handbook of Labor, Human Resources and Population Economics’. Both authors greatly appreciate financial support by the Novo Nordisk Foundation Grant NNF19SA0060072, for the project ‘The impact of inequality on growth, human development and governance’. There are no conflicts of interest.

Note: the copyright line has been corrected on 7 October 2022.
Introduction

Is inequality good or bad for growth? Is there a fundamental trade-off for policy-makers between achieving an equal society or a thriving economy? How does inequality evolve at different stages of a capitalist market economy? In particular, will inequality eventually simply fade away with technological progress and economic development or continue to intensify? Although such and related questions have fascinated and preoccupied economic thinkers since the beginning of the discipline’s modern history, few clear answers and little consensus have emerged. According to Banerjee and Duflo (2003), this is because the most fundamental questions in economics typically prove to be the most difficult to answer, and the question of the effect of inequality on growth is no exception. However, this by no means implies that no progress on these issues has been made in the last decades—quite the contrary. Consequently, the main objective of this review is to provide a critical overview of the theoretical and empirical state of knowledge on the complex interplay between inequality and economic growth. A major complication with respect to this issue is that causality can run both ways. That is, inequality can affect growth, and conversely, growth can affect inequality. This review centers on the first of the two causal relationships: namely, we consider under what conditions (human) capital accumulation, innovation, and economic growth are influenced by the distribution of economic resources. Fundamentally, the objective is to identify a set of mechanisms driving the effect of a more equal distribution of (labour) income and wealth on economic growth—whether beneficial or detrimental. As mentioned, however, there may exist complicated feedback loops from growth to inequality that need to be kept in mind. Nonetheless, due to space constraints, the reverse causal relationship is not discussed. The literature focusing on the dynamics of the distribution of income and wealth over the course of economic development, in particular the famous Kuznets curve hypothesis postulating an inverse U-shaped relationship between growth and inequality, and other ‘trickle-down’ mechanisms are mentioned only in passing.

For the classical economists of the 19th century, above all David Ricardo and Karl Marx, the distribution of production among different classes within society was the central object of study in political economy. In contrast to their central importance and prominence in the 19th century, distributional issues receded considerably from attention in the field of economics over the course of the 20th century. Two reasons, among others, may be given as explanations. First, the very influential theory of Kuznets (1955) suggested that inequality will eventually decline as the economy develops. This extremely positive outlook of naturally diminishing inequality within maturing market economies was a major factor in the decline of interest in inequality within the field of economics (a more detailed discussion along these lines is provided in Piketty 2014). Second, the triumph of neoclassical growth theory (see particularly Solow 1956), which relies on representative-agent modeling strategies, relegated distributional issues to the margins of mainstream macroeconomics for decades. Indeed, as Atkinson and Bourguignon (2000) noted, many economists in the second half of the century believed that differences in distributional outcomes were of secondary importance relative to improvements in overall economic performance. This was largely due to the prevailing narrative at the time that there is a fundamental trade-off between growth and equality (Okun 1975)—specifically, that redistributing economic resources from rich to poor may hamper growth, as higher taxes and subsidies distort economic incentives, eventually leaving everyone worse off. Perhaps the most lucid articulation of this view was provided by Nobel laureate Robert E. Lucas (2004): ‘Of the tendencies that are harmful to sound economics, the most seductive, and in my opinion the most poisonous, is to focus on questions of distribution.’ To put the prevailing thinking of the time more succinctly (and rakishly): Economics and economic policy should not be concerned with how to divide up the economic ‘pie’, but how to make it bigger. However, does a trade-off between growth and equality truly exist? Intuitively, at least, it is not hard to think of policies that both reduce inequality and strengthen growth prospects—think, perhaps, of public education. Clearly, public expenditures must be financed, and since lump-sum redistributive instruments are not available in reality, (progressive) taxes and transfers indeed alter incentives and rewards in market interactions. Whether such distortions
outweigh the welfare gains from public investment, however, is an empirical question that requires a thorough investigation, a matter covered in Section 5.2.

In the wake of the profound shifts in the distribution of income and wealth both within and across countries in the latter half of the 20th century (see, e.g., König et al. 2020 and Bartels and Waldenström 2021 for surveys), the relevance of inequality as an object of study has surged since the 1990s and is now back at the heart of macroeconomic analysis. This is clearly reflected in the recent growth literature, which has produced a variety of theoretical models and an enormous body (and range) of empirical results on the relationship between inequality and growth. However, a clear consensus has not yet been reached: existing empirical evidence finds both significant positive and negative effects of inequality on growth. This is perhaps hardly surprising, insofar as the various theoretical channels and, in particular, their interplay are considerably more complex than the commonly estimated empirical relationships. Indeed, attempting to estimate a (linear) reduced-form relationship and identify a single parameter that captures the complex inequality–growth effect for all countries at each stage of development seems a rather futile endeavor from the outset. Consequently, theoretical work identifying the multitude of distinct channels through which inequality can promote or hamper growth remains key. A careful examination of these theoretical channels (see Section 3 and 5) is both necessary and promising for two main reasons. First, it permits the existing empirical evidence to be both better understood and reconciled. Thus, it helps bridge the empirical and theoretical literature. Second, an in-depth theoretical understanding of the channels through which inequality affects growth is likely to be key for fruitful future empirical work in this field.

This study reviews various interactions between inequality and growth from both a theoretical and empirical perspective, but given the limited scope, it is only possible to highlight the main issues from this extensive literature. Thus, the review by no means claims to be exhaustive. Furthermore, this review relates to, complements, and updates previous surveys of the inequality–growth relationship (Aghion et al. 1999; Bénabou 1996; Bertola 2000; Galor 2009; Neves and Silva 2014; Voitchovsky 2011; Zweimüller 2000a). The purpose of this review is to provide a general and non-technical overview of current research in the inequality–growth literature while providing the reader with key references for a more in-depth study of the variety of topics touched upon.

The rest of this review is organized as follows. Section 2 introduces and defines some key concepts and terms. In Section 3, the main theoretical channels proposed in the literature are discussed, with different models revealing both positive and negative effects of inequality on economic activity. Section 4 presents and discusses the main reduced-form estimates of the effect of inequality on growth. Therefore, the focus is on methodological aspects and, in particular, on the manifold applied empirical specifications, the variety of which has thus far impeded conclusions from being drawn on the reduced-form relationship. To move a step forward, Section 5 investigates the evidence on the various theoretical channels. In doing so, however, we focus on a theoretical rather than a strongly empirical-methodological perspective, emphasizing substantive evaluation and interpretation of the results. Section 6 concludes and highlights some salient aspects for promising future empirical and theoretical work in this field.

2 Defining inequality and growth and their relationship

The relationship between inequality and growth can be analyzed from three angles: (i) growth and inequality can be joint outcomes of market interactions and economic policies (see, e.g., Lundberg and

1 For a more in-depth formal discussion and treatment of the theoretical models used in the literature, see Bertola et al. (2014). Meta-analyses of the empirical results regarding the effect of inequality on growth can be found in de Dominicis et al. (2008) and Neves et al. (2016).
Squire 2003). The neoclassical theory of distribution argues that with perfect markets, technology, and factor endowments, the level of output and its distribution among the factors of capital and labour are determined simultaneously. Thus, technological change likely affects inequality and growth simultaneously. Another relevant example is trade openness. If a country opens to trade, growth and inequality are likely to rise at the same time (Foellmi and Oechslin 2020; Melitz 2003). Additionally, government interventions—especially taxation (e.g. Rebelo 1991) and the provision of public goods, such as education (e.g. Goldin and Katz 2008)—are arguably the most important forces affecting inequality and growth simultaneously. (ii) Growth may alter inequality. The Kuznets curve hypothesis is the famous articulation of this connection. Kuznets (1955) argued that inequality increases at early stages of economic development as workers move from the traditional to the modern sector and eventually decreases through a trickle-down process as the modern sector becomes prevalent in the entire economy. Many major theoretical contributions (see, e.g., Acemoglu and Robinson 2000; Aghion and Bolton 1997; Galor and Tsiddon 1997; Greenwood and Jovanovic 1990) feature a mechanism capable of generating a Kuznets curve. More recent empirical evidence based on long-run inequality series, however, questions the general validity of such a relationship and suggests that historical and political events are more decisive (Piketty 2014). (iii) Inequality can affect growth. This is the causal link at the heart of this review. In particular, the question of whether there exists a general trade-off between inequality and growth is investigated here. To make the concepts more precise, we define below the aspects of inequality and growth to be examined.

Inequality. Economic inequality can be measured along several dimensions: (top) incomes, wages, consumption, wealth, land, effort, or opportunity. The empirical literature has largely employed the concepts for which the largest and highest-quality datasets were available—predominantly income (see Table A1). A priori, there is no single correct concept of inequality that should be utilized. Rather, the choice of concept depends on the specific question and, in particular, the relevant theoretical mechanism (see Section 3). In most theoretical channels, as discussed below, the distribution of wealth is the inequality measure of primary interest. Wealth should be broadly defined. In particular, it should include financial and non-financial assets—housing wealth and land—net of debt. The primary theoretical channel whereby distribution affects aggregate output and growth is through the impact of individual savings and investment decisions on human or physical capital, and hence, it is the distribution of wealth that matters—regardless of whether that wealth is the result of the accumulation of labour or capital income (Aghion et al. 1999).

3 How and with what data inequality can be measured best is a challenging task in itself. The empirical inequality–growth literature, which attempts to estimate a relationship in reduced form, has mostly used a single inequality statistic, the Gini coefficient (see Table A1). However, as shown by Voitchovsky (2005), the use of this sole statistic may be problematic, as it measures only the average effect of inequality on growth and thereby obscures underlying complexity in the relationship. Hence, the appropriate choice of inequality statistic should again be guided by theory, since different channels (see Section 3) refer to inequality at different parts of the distribution.

2 Note that whether the data correspond to gross income, net income, or expenditures, as well as individuals or households, is pertinent to determining the effects of inequality (Knowles 2005).

3 Some factors used in the production of output can be accumulated and others cannot. In theoretical models, the accumulable factor is sometimes referred to as capital and the non-accumulable factor as labour. This crude distinction between capital and labour can, however, be misleading, as an individual’s human capital, which determines the efficiency of his or her labour, is clearly determined by investment decisions. Hence, accumulable factors (e.g., physical capital, human capital, knowledge), which by definition are determined by (individual) saving behaviour, evolve dynamically and, on the other hand, non-accumulable factors (e.g., land, natural resources, physical and intellectual abilities) are exogenously determined. See Bertola et al. (2014) for a detailed discussion.
Growth. In the analysis of growth, the fundamental object of interest is how people’s standard of living and welfare evolve over time. The standard measure used for this purpose is the (annual percentage) change in real per capita GDP. Although the limitations of GDP as a measure of economic welfare are well established (see, e.g., Jones and Klenow 2016; Stiglitz et al. 2009), it remains the standard metric employed in virtually all of the empirical studies discussed in this review. Growth performance measured by GDP can in turn be captured in several ways: average growth rates, variability of growth, the length of growth spells, or the potential of growth to ‘take off’ from stagnation to positive growth rates. Most empirical work typically focuses on per capita growth rates over a somewhat arbitrary period of time, say, five or ten years. Accordingly, these growth measures are the focus of this review.\(^4\) However, two important points must be noted. First, the choice of time period seems to be of great significance with respect to the estimated effect (Halter et al. 2014). Second, the GDP per capita growth rate is an average measure. This implies that positive per capita growth improves income and living standards on average but not necessarily for everyone within a society, perhaps not even for the majority.

3 Theoretical channels from inequality to growth

The prevailing neoclassical paradigm removed distributional considerations from mainstream macroeconomic analysis for a long period. By building on representative-agent modeling strategies and thus discarding heterogeneity among agents, the neoclassical approach allows investigation of efficiency without having to consider distributional issues. Consequently, it abstracts from the causal link connecting inequality to economic growth, which was prominent in classical economics.\(^5\) Since neoclassical growth theory was first proposed, the theoretical literature has come a long way in reintroducing heterogeneity into the field of macroeconomics. In particular, since the 1990s, a variety of distinct rationales for both positive and negative channels linking inequality to growth have been put forward. In the following subsections, the main theoretical channels identified in the literature, under both the classical and modern approaches, are discussed from a basic perspective. Some more recent theoretical contributions are discussed along with the empirical evidence on the specific channels in Section 5.

3.1 Unequal propensity to save

Early on, Fisher (1930) and Keynes (1936) and later the post-Keynesians (see, e.g., Kaldor 1955; Kaldor 1957; Pasinetti 1962) argued that the marginal propensity to save is an increasing function of wealth—that the rich save relatively more than the poor. If the saving function is convex, inequality positively affects capital accumulation and hence growth accordingly. As a polar case, Stiglitz (1969) demonstrates that under neoclassical assumptions and with a linear savings function, wealth and income inequality have no effect on the long-run behaviour of the economy. When the savings function is convex, however, as subsequently shown by Bourguignon (1981), unequal societies have higher aggregate savings and investment, leading to faster growth. Moreover, and perhaps surprisingly, an unequal society (steady state) is Pareto superior to an egalitarian society: the income and capital of both the poor and the rich are higher in the inequalitarian steady state.\(^4\) However, there are other interesting studies that examine, for instance, the impact of inequality on the duration of growth spells (see Berg et al. 2012).\(^5\) By focusing on averages, neoclassical growth theory has undoubtedly made an extremely meaningful and significant contribution to the understanding of long-run growth, and its clarity and tractability continue to make it an appropriate starting point for understanding growth today. This is particularly evident from the fact that virtually any discussion of growth in contemporary macroeconomics textbooks starts with the Solow and Ramsey models.
3.2 The equity–efficiency trade-off

A second argument for why inequality might be pro-growth builds on incentives. When there are no or small income differences, incentives to engage in time-consuming or risky investment activities are limited. Hence, inequality serves as a motivator to invest in education or physical capital. This rationale was first formally presented in a seminal contribution by Mirrlees (1971). The core premise, established by Mirrlees in the context of optimal labour income taxation, is that tax authorities—or, to be more precise, a utilitarian social planner within the model—seek a tax system that maximizes social welfare. The problem that tax authorities face, however, is that the innate ability of the agents whom they wish to tax is unobservable to them and, hence, they resort to labour income as the best available proxy for ability, which ultimately gives rise to a conspicuous moral hazard problem. By taxing income rather than ability, tax authorities distort economic incentives: higher taxes translate into lower returns from work, which discourages individuals from exerting effort (or investing in education), which in turn reduces output and growth. Although this Mirrleesian reasoning is mostly employed within the context of taxation, it is not contingent upon it. When effort is difficult or costly to monitor and consequently moral hazard may arise, an unequal distribution of income may create positive economic incentives for effort and investment (Lazear and Rosen 1981), eventually leading to greater output.

The Mirrlees approach outlined above provides the foundation for the famous classic trade-off between equality and efficiency. Inequality and growth may not be achieved simultaneously because redistribution, while it might create more equality, comes at some efficiency cost. This view is most famously articulated in Okun’s (1975) leaky bucket metaphor: ‘The money must be carried from the rich to the poor in a leaky bucket. Some of it will simply disappear in transit, so the poor will not receive all the money that is taken from the rich.’ This basic logic of this trade-off is also present in the growth literature. Rebelo (1991) has demonstrated, using endogenous growth models where output is proportional to physical capital, that higher tax rates lower the rate of return on private investment. This downward distortion of savings incentives leads to a permanent decline in the rate of capital accumulation and economic growth. This is the central message of the equity–efficiency trade-off. Whenever the return to investment is decreased, through redistribution or changed economic circumstances, savings or education incentives are reduced, which lowers growth. As Rebelo (1991) shows, this argument is not restricted to perfect markets but also holds in an environment with increasing returns to scale.6

3.3 The classical political economy approach: endogenous fiscal policy

The finding above raises another issue. Apparently, the negative effects of taxation may be substantial and have potentially significant negative effects on long-term growth. Why, then, are taxes introduced at all? This is where the classical political economy growth approach steps in. Combining endogenous growth models (similar to the above) with the political economy mechanisms of majority voting (e.g., Meltzer and Richard 1981), which endogenizes the tax rate decision, a number of highly influential studies (in particular, Alesina and Rodrik 1994 and Persson and Tabellini 1994) established a negative link from inequality to growth.7 Although the models in this literature differ, the basic reasoning and theoretical account of causation are broadly similar: in a democracy, or more generally in a system with majority voting, the median voter is decisive and thus sets the tax rate. Because the median voter is poorer than the average individual in society (wealth distributions are right-skewed), he or she votes for increased redistribution. Insofar as the distribution of income and wealth becomes more right-skewed,6

6 However, Aghion and Howitt (1992) argue that excessively high levels of inequality could lead to less investment: a new entrant might be deterred from investing in R&D if the income/technology gap relative to the incumbent is too large.

7 For alternative growth models with a political economy redistribution mechanism, see, e.g., Bertola (1993), Perotti (1993), and Saint-Paul and Verdier (1993). For a more in-depth treatment of this literature, see Bénabou (1996), which provides an excellent review of this literature along with several interesting extensions of the cited models.
the tax rate rises. Consequently, more unequal societies end up with higher taxes, more distorted economic incentives, and thus lower long-term growth.

3.4 The sociopolitical instability approach: instability, conflict, and institutions

The sociopolitical instability approach (see, e.g., Alesina et al. 1996; Bénabou 1996; Benhabib and Rustichini 1996) is yet another channel by which inequality has a negative effect on economic growth. The general rationale of the approach is fairly straightforward: more (wealth) inequality causes people to pursue social activities outside regular markets, such as crime (see, e.g., Fajnzylber et al. 2002), sociopolitical unrest, violent protests, and revolutions. Such sociopolitical instabilities and conflicts fuel insecurity, mistrust, and negative economic prospects. This in turn discourages investment and capital accumulation and thus depresses long-run growth.

A much-emphasized and closely intertwined issue is that economic inequality and social polarization may impede the securing of property rights, resulting in a decline in investment and growth. For example, in unequal societies, governments may under-invest in their legal infrastructure (Svensson 1998) or make more unstable (volatile) decisions (Keffer and Knack 2002), or the rich may abuse political and legal institutions for their own benefit (E. Glaeser et al. 2003). Moreover, Rodrik (1999) has argued that the economic consequences of a negative exogenous shock are exacerbated by the distributional conflicts that these shocks trigger when social cleavages in a society are profound and conflict management institutions are weak. The importance of economic institutions—such as the structure of property rights and the functioning of markets—for economic development has long been recognized and documented (see, e.g., Acemoglu et al. 2001; Acemoglu et al. 2002; Hall and Jones 1999). However, institutions are themselves endogenous and are thus determined by a variety of factors, including inequality (Sokoloff and Engerman 2000). The question of how growth-enhancing economic institutions emerge, however, is beyond the scope of this survey.

3.5 The credit market imperfection approach: barriers to accumulation

The credit market imperfection approach typically points to a negative effect of inequality on growth. The seminal article by Galor and Zeira (1993) rested on two central assumptions that have generally been maintained in the subsequent literature. First, borrowing is limited (or, in extreme cases, impossible). Second, there are fixed costs involved in investments. Galor and Zeira (1993) argue that the poor cannot adequately invest in their human capital, as they do not have sufficient wealth and have no access to credit. The wealthy, on the other hand, do not need to borrow and can therefore afford to invest in human capital. Inefficiency occurs if the wealth distribution does not coincide with the distribution of innate abilities. Since it is unlikely that there exists a perfect correlation between ability (and thus returns to investment) and wealth, wealth inequality leads the poor to under-invest in human capital, which negatively affects the overall level of human capital and thus economic growth in both the short and long run. This argument is true for investment in physical capital as well. When access to borrowing is limited, promising business ideas might not be realized (Foellmi and Oechslin 2010), or firms may not adopt more productive technologies, thereby reducing long-term growth (Foellmi and Oechslin 2020).

8 For a survey of the causes of civil wars, including economic inequality, see Blattman and Miguel (2010).

9 The argument that greater inequality leads to more conflict is, of course, a rather stark oversimplification. In fact, the effect of distribution on conflict might be highly nonlinear and surprisingly complex (see Esteban and Ray 1999).

10 For literature (reviews) on this issue, see Acemoglu et al. (2005), Acemoglu and Robinson (2012), Acemoglu et al. (2014), and references therein.
In the seminal Galor and Zeira (1993) model, inequality and credit constraints lead to investment decisions in education that effectively segment the labour force into skilled and unskilled workers, thus determining long-run output. Similarly, Banerjee and Newman (1993) analyze the effect of wealth inequality on the decision to become a worker or an entrepreneur. Again, with imperfect credit markets and fixed costs associated with entrepreneurial activities, wealth inequality can lead to under-investment in entrepreneurial activities and thus be detrimental to economic growth. The subsequent literature has modified and advanced the capital market imperfection approach along many dimensions. For instance, even when limited borrowing is possible, poor people in need of borrowing have to pay back a share of the returns when they become successful. This, however, limits the efforts of the poor in the first place, as argued by Aghion and Bolton (1997) and Piketty (1997). In addition, the limited opportunity to invest in human capital may result in a changed quality–quantity trade-off in fertility decisions. Credit-constrained poor households may have more children and invest little in education (see, e.g., De La Croix and Doepke 2003 and Kremer and Chen 2002). This mechanism explains why inequality is perpetuated, since the high number of children and the low level of human capital hinder poor households from building capital.

Under some circumstances, however, inequality might promote growth even with capital market imperfections, as the fixed costs of investment present a non-convexity. Without inequality, there might be no households with sufficient funds to surpass the investment threshold, creating a positive link between inequality, investment, and subsequent growth. When a household’s wealth level is close enough to the investment threshold, high savings or hard work might allow poor people to reach the minimum level of investment needed in a future period (see, e.g., Ghatak et al. 2001). Even with convex technology, as Foellmi and Oechslin (2008) argue, higher inequality decreases capital demand and the interest rate. The lowered interest might ease access to credit for poor people where the marginal product of investing in human capital is large.

Galor and Moav (2004) unify the savings argument (see Section 3.1) with the credit market imperfection approach. In particular, they argue that the impact of inequality on growth reverses over the course of development. At early stages, when countries switch from stagnation to a process of sustained growth, physical investment is the main driver of growth, but it is replaced by education at later stages of development. Inequality may thus be beneficial to growth at earlier stages of development but detrimental in later phases due to potential credit constraints. Beyond this, Galor et al. (2009) argue that high land inequality negatively affects human capital accumulation, as land-owning elites retard economy-wide investment in human capital, such as public schooling, that would allow capital market imperfections to be overcome. The arguments for why inequality promotes growth, at least temporarily, bear a commonality: they typically postulate a trickle-down process. Higher savings and investment lower interest rates or increase wages; through this mechanism, the wealth of the rich eventually raises the incomes of the poor.

Marrero and Rodríguez (2013) emphasize that income inequality could be understood as inequality of effort (IE) and inequality of opportunity (IO). Therefore, theoretically, IE and IO have opposite effects on economic growth: the arguments in Section 3.2 suggest that IE has a positive effect while IO has a negative effect, as discussed in this section. The negative effect of IO arises because not the most talented individuals—i.e., those with the highest returns on investment—but rather those with a more privileged social background are able to accumulate more (human) capital.

Roemer and Trannoy (2016) give a detailed overview of the philosophical foundation on whether inequality is morally (un)acceptable. The theories discussed there distinguish between processes and outcomes, thus (in)equity of opportunity becomes a central issue.
3.6 The demand-driven innovation approach: prize and market size effects

The channels above do not consider demand effects resulting from Engel’s law, i.e. that consumption becomes more diverse as income rises. However, under non-homothetic preferences, (income) inequality and the corresponding distribution of purchasing power across individuals alter the incentives for entrepreneurs to undertake R&D and thus affect innovation and growth. Due to Engel’s law, rising incomes are predominantly spent on new products. Consequently, income-dependent demand implies that the income distribution influences the market size for innovations. For an innovator to develop a new or better product or process technology, he or she must pay a fixed R&D cost ex ante. Because the initial R&D outlays constitute fixed costs, the economic mechanism bears similarities to the opportunity-creation effect of investment discussed in the models with financial market imperfections above. The demand for innovation depends on market size, that is, how many consumers can afford the new product, which typically leads to an ambiguous relationship between inequality and growth (see the static model of Murphy et al. 1989 and the subsequent dynamic models of Zweimüller 2000b and Matsuyama 2002). These papers, however, abstract from the possibility of innovators trying to extract the purchasing power of the rich by setting higher prices. Foellmi and Zweimüller (2006) develop an endogenous growth model that studies monopolistic price setting. They show that when price effects dominate market-size effects, higher inequality is favorable for growth. Whenever process innovations—for which the market size is of greater importance—are relevant for growth, as in Foellmi et al. (2014), excessively high inequality could be detrimental to growth, while an intermediate level of inequality renders a maximal growth rate. Foellmi and Zweimüller (2017) summarize the interplay of price and market-size effects in a parsimonious framework of horizontal innovations. They conclude that innovations are fostered if there are rich consumers willing to pay high prices for new products. On the other hand, profitable innovations require sufficiently large markets, which may be lacking when incomes are concentrated among a small number of rich households. Hence, an intermediate level of inequality would lead to a maximal growth rate.

3.7 Two remarks on the difference between positive and negative channels

This section has discussed theoretical channels that point to both negative and positive links from inequality to growth. The extent to which the various theoretical channels examined are empirically supported by the data are addressed in Section 5. At this juncture, however, it is worth noting two important insights from the literature regarding the different mechanisms of action between the positive and negative channels. First, as argued by Voitchovsky (2005), most positive channels can be associated with inequality at the top end of the distribution, while many negative channels are attributed to inequality at the bottom end. Second, as explained in more depth in Halter et al. (2014), most of the positive channels are based on mechanisms focusing on incentives or market distortions. Insofar as the latter are limited and can be improved significantly through reforms, the mentioned economic mechanisms are more short-term in nature. The negative channels, on the other hand, operate through changes in political and economic institutions and social norms or highlight economic forces affecting changes in educational attainment, making the negative effects more likely to be experienced in the long run.

4 Reduced-form evidence on the effect of inequality on growth

The stream of empirical literature attempting to estimate the effect of inequality on economic growth in reduced form sprang up in the mid-1990s and continues to grow to this day. After nearly 30 years of

12 This effect is not limited to a closed economy set-up. Matsuyama (2019) argues, based on a trade model with increasing returns to scale, that domestic demand composition can affect domestic supply more than proportionally when a country opens to trade.
extensive research on this issue, no empirical consensus has yet been reached, but some insights have emerged. In this section, a review of this voluminous empirical literature—with a focus on more recent research—is presented, and some key lessons are highlighted. The differences in the results are due to several factors: the quality and comparability of the data, the data structure and estimation techniques, the country-sample selection, the inequality concept and statistics applied, and the length of growth periods considered. Table A1 provides a systematic overview of the empirical literature reviewed in this section.

4.1 A (too) early consensus from cross-country regressions

In the mid-1990s, a number of influential papers (Alesina and Rodrik 1994; Clarke 1995; Perotti 1996; Persson and Tabellini 1994) ran standard reduced-form ordinary least squares (OLS) regressions on cross-sectional data from a sample of developed and developing countries to estimate the effect of inequality on growth. Essentially, these studies linearly regressed the average real GDP growth rate per capita over a long period (approximately 20 years) on initial inequality (mostly measured by the income Gini) and some standard growth controls, as identified by Barro (1991). While there were some methodological differences in this first wave of empirical inequality–growth research, the overall finding and conclusion was that more inequality generally hinders future growth.13

4.2 New data, new inequality concepts, new estimation techniques, and new results

With the introduction of Deininger and Squire’s (1996) more comprehensive and higher-quality dataset (henceforth the DS dataset), the early consensus of the mid-1990s that there exists a negative effect of inequality on growth was soon challenged by a new wave of research. The subsequent literature has raised a number of criticisms, which are discussed in turn below.

Quality and comparability of the data

A major concern regarding the first wave of research was the dubious quality of the data on which the results were based (see, e.g., Deininger and Squire 1996; Deininger and Squire 1998). The introduction of the DS dataset doubtless represented a significant advancement over previous compilations, in terms of both quality and coverage, although it raised concerns as well (see, e.g., Atkinson and Brandolini 2001).14 This is reflected by the fact that since then, most research has used the DS dataset or its successor, the World Income Inequality Database (WIID). Most intriguingly, however, the introduction of the DS dataset has not fundamentally altered the main conclusions of earlier studies. Deininger and Squire (1998) conclude that the main results of previous studies are not affected by the use of their higher-quality dataset: initial income inequality has a negative effect on subsequent growth.

Although the quality of the WIID remains a subject of lively debate (see, e.g., Atkinson and Brandolini 2009; Jenkins 2015; Solt 2015), it is undeniable that this database has improved significantly over the past two decades.15 Continuous improvement in the quality and coverage of income inequality data is, of course, valuable in itself, but this by no means implies that this is sufficient to overcome the difficulties encountered in the empirical literature reviewed in this section. The failure to reach a consensus on the inequality–growth relationship, despite significant improvements in data quality, suggests that there are more fundamental issues to be addressed.

13 For a comprehensive review of this early literature, the reader is referred to Bénabou (1996).

14 For a more detailed overview on data quality, see Voitchovsky (2011).

15 In its current version, the WIID covers 200 countries with over 3,700 unique country-year observations (UNU-WIDER).
Data structure and estimation techniques

Another main concern with the first wave of empirical work based on cross-sectional data was potential bias due to omitted variables (see Forbes 2000 for a detailed discussion). The apprehension was that time-invariant (unobservable) country characteristics (e.g., geography, institutional and governmental quality, labour market institutions, production technologies) might be correlated with inequality and growth, causing a bias in the reduced-form estimates. Two main approaches have been adopted in the literature to avoid possible omitted variable bias resulting from time-invariant country-specific effects. First, panel data techniques such as fixed effect (FE) and first-difference generalized method of moments (D-GMM) models have become newly applicable with the introduction of the DS panel dataset. Second, panel estimation techniques have also been applied at the United States’ (US) cross-state level (Panizza 2002; Partridge 1997). Early results from panel data studies tend to find a positive relationship from inequality to subsequent growth (Forbes 2000; Li and Zou 1998; Partridge 1997) or no robust and significant relationship between the two (Barro 2000; Panizza 2002). The general conclusion has been that cross-sectional OLS estimates for long-run growth rates yield a negative effect of inequality on growth, while panel estimates for shorter growth periods find a positive effect (Voitchovsky 2011).

In contrast, Banerjee and Duflo (2003) apply non-parametric methods to show that changes in inequality (both positive and negative) are associated with lower growth in the future. Their main argument is that applying a linear model (OLS, FE, GMM) to a nonlinear relationship—for which they provide evidence—may result in very misleading conclusions. Furthermore, Herzer and Vollmer (2012) have argued that the standard panel estimators used in the literature discussed above may suffer from slope heterogeneity and endogenous regressors, problems that might be addressed by using heterogeneous panel cointegration estimators. It should be noted, however, that this approach has not been widely adopted in the empirical inequality–growth literature, and that most studies still rely on the popular system GMM (S-GMM) estimator proposed by Blundell and Bond (1998). The S-GMM estimator has several advantages over estimators previously utilized in the literature and is hence suitable (in principle) for examining the inequality–growth relationship and for performing growth empirics in general. However, a word of caution is warranted. There is growing concern that weak instruments in S-GMM models may produce spurious results, both in general growth empirics (see Bazzi and Clemens 2013) and in the empirical inequality–growth literature (see Kraay 2015). To alleviate such concerns and to provide evidence of consistency, a number of different diagnostic tests regarding weak instruments, as proposed by Bazzi and Clemens (2013) and Kraay (2015), should be performed.

Country-sample selection

Selection of the country sample is likely to be a critical factor in determining which reduced-form results are obtained. For instance, Galor and Moav (2004) have argued that the positive effects of inequality on growth are reversed as an economy moves from the early to more advanced stages of development. Many scholars have divided their samples into poor and rich countries to test whether there is a heterogeneous effect of inequality on growth. What do these sub-sampling exercises reveal about the reduced-form estimates? A number of studies find no significant difference between developing and developed countries regarding the impact of inequality on growth (Castelló and Doménech 2002; Deininger and

16 In particular, they apply the between-dimension group-mean panel dynamic OLS (DOLS) estimator proposed by Pedroni (2001). For details, see Herzer and Vollmer (2012).

17 For such an application, see, e.g., Gründler and Scheuermeyer (2018).

18 Another theoretical prediction is that the endogenous fiscal-policy channel via the median voter theorem applies only to democracies and not to non-democracies. While Persson and Tabellini (1994) find support for this premise, others do not (Alesina and Rodrik 1994). At issue is that democracies are predominantly rich countries, making it empirically difficult to distinguish an income effect from a democracy effect in the relationship between inequality and growth (Perotti 1996).
Squire 1998; Forbes 2000; Herzer and Vollmer 2012). Many other papers that find a negative (or no) effect in the full sample generally conclude that inequality has a negative effect on subsequent growth in poor countries and no clear or a positive effect in rich countries (Castelló-Climent 2010; Chambers and Krause 2010; Barro 2000; Gründler and Scheuermeyer 2018).

The review of country samples provides two important insights. First and foremost, there is ample evidence that country sampling plays a crucial role in many empirical applications and should therefore be critically evaluated and justified. Second, there is at least some evidence that the negative effect of inequality on growth works through poor countries rather than advanced economies, which may be viewed as suggestive evidence for the credit market imperfection channel (see Sections 3.5 and 5.3).

Inequality concepts and statistics

The precise measure of inequality is a salient issue to the reduced-form estimation: what are the implications of applying different (i) inequality concepts (e.g., inequality of income, wages, wealth, land, or opportunity\(^{19}\)) and (ii) inequality statistics (e.g., the Gini coefficient, Theil index, quintile shares, percentile ratios) for empirical results?

Generally, wealth is a theoretically superior concept to income for measuring the impact of inequality on growth (Aghion et al. 1999). For most of the theoretical channels discussed in Section 3, different wealth levels are decisive. However, due to data availability, the empirical literature has relied almost exclusively on income measures (see Table A1). In a limited number of cases, the distribution of wealth has been approximated by the distribution of land (Alesina and Rodrik 1994; Birdsall and Londoño 1997; Deininger and Squire 1998). Indeed, this work has established that land inequality has a stronger negative impact on growth than income inequality—the coefficient on the income Gini is often no longer significant when both inequality measures are included. Castelló and Doménech (2002) and Castelló-Climent (2010) have instead emphasized the role of human capital inequality as the critical concept for measuring the impact of inequality on growth. Although the concepts of human capital inequality and land inequality differ markedly, a general pattern emerges. Again, wealth inequality, as measured by human capital inequality, seems to yield more robust results, with the identified effects borne particularly by less developed countries. However, both human capital and land are arguably rather imprecise measures of net wealth at market values.

Braggion et al. (2021) are the first to use an improved measure of financial and housing wealth inequality to examine the impact of wealth inequality on growth (Aghion et al. 1999). For most of the theoretical channels discussed in Section 3, different wealth levels are decisive. However, due to data availability, the empirical literature has relied almost exclusively on income measures (see Table A1). In a limited number of cases, the distribution of wealth has been approximated by the distribution of land (Alesina and Rodrik 1994; Birdsall and Londoño 1997; Deininger and Squire 1998). Indeed, this work has established that land inequality has a stronger negative impact on growth than income inequality—the coefficient on the income Gini is often no longer significant when both inequality measures are included. Castelló and Doménech (2002) and Castelló-Climent (2010) have instead emphasized the role of human capital inequality as the critical concept for measuring the impact of inequality on growth. Although the concepts of human capital inequality and land inequality differ markedly, a general pattern emerges. Again, wealth inequality, as measured by human capital inequality, seems to yield more robust results, with the identified effects borne particularly by less developed countries. However, both human capital and land are arguably rather imprecise measures of net wealth at market values.

Braggion et al. (2021) are the first to use an improved measure of financial and housing wealth inequality to examine the impact of wealth inequality on business formation and economic development at the US metropolitan statistical area (MSA) level. They find that wealth inequality economically and statistically significantly reduces business creation and leads to lower per-capita income growth rates, in line with the theoretical predictions of Foellmi and Oechslin (2020) on wealth inequality and entrepreneurship. Surprisingly, however, they find that when they include both the financial wealth and income Ginis, the former remains roughly unchanged (a statistically negative effect), while the coefficient on the latter is statistically positive. From this, they conclude that (financial) wealth inequality slows entrepreneurship while income inequality promotes it through supply-side effects. However, it may be noted that Aghion et al. (2019) have shown that the causal link between income inequality and innovation may run well in the other direction as well: their instrumental variables (IV) results indicate that a 1 per cent increase in innovation (as measured by the number of patents) raises the income share of the top 1 per cent by 0.2 per cent. In general, the empirical evidence discussed above has yet to be confirmed by properly measured wealth inequality. In particular, the interplay of income and wealth inequality statistics in growth regressions does not yet seem to be thoroughly explored. This might, however, be feasible in the near future, at least for a shorter period of time and for developed economies. The World Inequality

\(^{19}\) Evidence on how inequality of opportunity is related to growth is provided in Section 5.4.
Database (WID.world), for instance, is currently aiming to compile new and comparable data on wealth inequality.

The second issue raised involves which statistic is most suitable for measuring inequality in the growth context. Most (early) empirical work utilized the most popular inequality measure, the Gini coefficient. In an important contribution, Voitchovsky (2005) demonstrated that the use of a single inequality statistic—like the Gini—may obscure the complexity of the inequality–growth relationship and lead to non-significant results. However, she finds that if a measure of inequality at the top and bottom end of the distribution is included in a regression simultaneously, inequality at the top tends to be positively associated with growth but inequality at the bottom negatively related to growth. Likewise, Cingano (2014) supports the finding of a negative effect of income inequality at the bottom of the distribution, while the effect on future growth of inequality at the top appears not to be robust or significant. However, a recent study by Litschig and Lombardi (2019) arrives at the opposite result. They exploit differences among 3,659 Brazilian municipalities over the period 1970–2010 and find that inequality at the bottom of the distribution has a positive effect on economic growth, while inequality at the top has no effect. These new results contrast sharply with Voitchovsky’s (2005) earlier findings that inequality at the bottom of the distribution is negatively associated and inequality at the top positively associated with growth. Litschig and Lombardi (2019) suggest that these differences are due to a conceptual difficulty in Voitchovsky’s (2005) work. Voitchovsky’s (2005) regression specifications generally include percentile ratios along with the Gini coefficient in the same equation. However, as Litschig and Lombardi (2019) point out, if the Gini coefficient remains constant, a higher 90/75 income percentile ratio necessarily implies that inequality in other parts of the distribution must be lower. This, they argue, is troublesome because it is therefore not clear what the coefficient on the 90/75 income percentile ratio is truly picking up. Thus, whether inequality at the bottom end of the distribution favours or hinders subsequent growth remains a contentious issue. However, it seems apparent that a single inequality statistic is unlikely to be sufficient to capture the full complexity of the relationship from inequality to growth.

An important limitation of the existing literature has recently been highlighted by Van der Weide and Milanovic (2018). Namely, all previous papers discussed in this review have exclusively examined how inequality affects average income growth rates. As Van der Weide and Milanovic (2018) note, this seems somewhat paradoxical. After all, one might suppose that we should be particularly interested in how inequality affects the income trajectories of individuals located at very different points in the income distribution. Using US state-level data for the period 1960 to 2010, Van der Weide and Milanovic (2018) examine whether and how inequality affects income growth differently across various percentiles of the income distribution. In essence, they find that in the US, initial inequality is negatively associated with subsequent growth rates among poorer income percentiles and positively related among higher percentiles. These are important findings, but much more research along these lines is warranted. The first and obvious next step in order to generalize these results is to extend this type of analysis to other countries and in a cross-country framework. Moreover, the finding that inequality in different parts of the distribution affects subsequent average growth unequally may be taken into account. To wit: is inequality at the bottom or at the top of the distribution causing different rates of income growth along the distribution? These remain open and critical issues to be addressed.

Length of growth periods

Recall that cross-country regressions (e.g. Alesina and Rodrik 1994) find a negative effect, while panel studies (e.g. Forbes 2000) find a beneficial effect of inequality on growth. This difference is partly explained by the fact that cross-sectional studies use much longer growth periods than panel studies (see Table A1). Indeed, Forbes herself emphasizes that her estimates of a short-term positive effect (based on five-year growth periods) are not necessarily inconsistent with the long-term negative relationship previously reported. In line with this, Halter et al. (2014) argue that the positive channels are based on purely economic mechanisms related to market incentives and therefore materialize in the short or
medium run. The negative channels, on the other hand, operate through political, institutional, and educational systems, the effects of which are much longer run in nature. Consistent with this argument, the authors present empirical evidence on the differential lag structure of the effects of inequality on growth. Their baseline result is that a rise in inequality has a positive effect on growth in the subsequent five-year period, while it reduces growth in the five-year period after the initial one. The overall long-term impact of higher inequality (over a ten-year growth period) tends to be negative.

4.3 Still no consensus from reduced-form cross-country estimates

This subsection presents the latest wave of empirical inequality–growth research in reduced form at the cross-country level, which has experienced a strong resurgence since 2018. However, the results remain divergent. Therefore, this survey is reluctant to draw a firm conclusion, as the debate continues and more research is needed.

Even just since 2018, a large body of empirical work has found positive, negative, or no effects of inequality on growth. In these works, in comparison to previous cross-country research, the data quality and sample selection appear to be less determinant than the differences in estimation techniques. While studies using the popular S-GMM estimator on large country samples consistently find a negative effect of income inequality on economic growth (see, e.g., Berg et al. 2018; Breunig and Majeed 2020; Gründler and Scheuermeyer 2018), alternative estimation techniques yield more diverse results. In particular, El-Shagi and Shao (2019) have argued that other estimators—such as the least squares dummy variable (LSDV) estimator—may provide more reliable results in the inequality–growth context. Using LSDV estimates, they indeed reach a different conclusion, namely, that inequality has a positive growth effect in the medium run. Similarly, Brueckner and Lederman’s (2018) IV regression results suggest a positive relationship in the full sample. In particular, they find a positive growth effect of inequality for poor countries and a negative effect for developed economies. These results are diametrically opposed to the results of Gründler and Scheuermeyer (2018), who rely on the S-GMM estimation method. To proceed and to better understand these contradictory findings, it appears crucial to better understand how the various estimation procedures drive the reduced-form results. Accordingly, further methodological research on the various estimators used in the growth literature will be key.

5 Evidence on specific theoretical channels

The debate over the reduced-form evidence on the link from inequality to economic growth remains open. To make progress, it makes sense to scrutinize the underlying economic mechanisms to better understand the different influence channels. Therefore, this section provides empirical evidence on the specific channels presented in Section 3.

5.1 Do the rich save more than the poor?

While the empirical underpinning of the convexity of the saving function (see Section 3.1 for theoretical arguments) was rather controversial in early empirical work, the seminal contribution by Dynan et al. (2004) documents this relationship using household survey data. More recent research based on micro data (see, e.g., Gandelman 2017 and Parker et al. 2013) supports the empirical findings of Dynan et al. (2004), showing that there is a positive relationship between (lifetime) income and the marginal propensity to save. In addition, Fagereng et al. (2020) find large differences in returns across the wealth distribution that are not merely due to differences in wealth allocation between safe and risky assets.

Scholl and Klasen (2019) caution that the positive growth effect of inequality that they identify is driven exclusively by transition countries (post-Soviet states).
Hence, the positive impact of inequality on growth through the savings channel might even be amplified by heterogeneous asset returns, as wealthier individuals not only have a higher propensity to save but also earn higher returns on their savings.

5.2 How does redistribution affect economic growth?

The theoretical arguments on incentives, taxation, and political economy discussed in Sections 3.2 and 3.3 raise the key empirical question of how taxation affects long-run growth. Recall that the endogenous fiscal-policy channel posits a link between inequality and growth operating through two mechanisms: (i) democratic countries with a more unequal income and/or wealth distribution adopt higher taxes (in accordance with the median voter theorem), and (ii) these higher taxes reduce economic growth (via the general equity–efficiency trade-off rationale). These two principal propositions are discussed in turn.

Do more unequal (democratic) countries redistribute more?

Answering this question empirically is challenging for several reasons. First, note that the redistribution hypothesis and the median voter hypothesis are not the same (Milanovic 2010). The former states that more redistribution occurs when market inequality increases, while the latter provides one particular theoretical explanation for why this might be the case. Indeed, the link from inequality to redistribution is theoretically ambiguous. More market inequality, i.e. before redistribution, may cause more redistribution through the median voter channel. However, greater inequality also implies that the wealthy have more resources to advocate for lower taxes in the political process (E. L. Glaeser 2008). Second, causality may run well in the other direction: less progressive taxes could cause more inequality (Piketty et al. 2014). Third, there is some question over how should redistribution best be measured: (i) as government transfers to GDP (e.g. Bassett et al. 1999), (ii) as the change in the income share (of the bottom half) with the move from factor to disposable income (e.g. Milanovic 2000), or (iii) as top marginal tax rates (e.g. Piketty et al. 2014).

Most empirical work suggests a negative correlation between inequality and redistribution (see, e.g., Alesina and Glaeser 2004; Bassett et al. 1999; Iversen and Soskice 2006; Perotti 1996; Piketty et al. 2014). Some studies, however, find a positive relationship (Milanovic 2000; Milanovic 2010; Scervini 2012). However, even those studies that conclude that more unequal countries redistribute more suggest that this is not driven by the median voter mechanism. Overall, there is little evidence that the median voter is decisive for the extent of redistribution. First, households with lower income tend to exhibit lower political participation. Mueller and Stratmann (2003) indeed find greater income disparities in countries where this is relevant in particular. Second, as argued in Mulligan et al. (2004), there is no significant difference between economically comparable democracies and non-democracies with regard to the economic or social policies that they pursue. Third, the middle class (home of the median voter) does not appear to be a net beneficiary of redistribution (Milanovic 2000; Scervini 2012). Fourth, Piketty et al. (2014) present evidence that increases in inequality (at the top) tend to follow tax cuts rather than vice versa. Fifth, experimental evidence by Kuziemko et al. (2015) suggests that their information treatment has large effects on views about inequality (the share of those who think inequality is a ‘very serious problem’ rises by over 35 per cent) but results in only a small and statistically non-significant increase in support for redistribution.

21 A look at simple cross-country correlations between inequality (measured by top 1 per cent income shares) and top marginal tax rates (see Figures 2 and 3 in Piketty et al. 2014) casts doubt on a positive relationship between inequality and redistribution. From such correlations, if any, one would conclude that there is a negative relationship. For details, see Piketty et al. (2014).
Do higher taxes cause lower economic growth?

Standard growth models generally predict that taxes are detrimental to growth (see Section 3.2). At the cross-country level, however, there is hardly any empirical evidence that higher taxes lead to lower economic growth (see, e.g., Berg et al. 2018; Cingano 2014; Easterly and Rebelo 1993; Gründler and Scheuermeyer 2018; Piketty et al. 2014; Jaimovich and Rebelo 2017). There are several reasons for this finding.

First, and possibly most importantly, the efficiency loss resulting from redistribution may be offset if taxes are used to promote public (Saint-Paul and Verdier 1993) and private (Lee and Roemer 1998) investment, most notably in the presence of binding credit constraints (see Section 3.5). If public investments, such as in infrastructure and education, are complementary to a more prosperous economy, the taxes needed to finance these public investments might at least partially be positively correlated with growth, too. Econometrically, the causal link from taxes to growth is therefore at least questionable. Consistent with this, there is empirical evidence suggesting that the positive growth effect of lower inequality might (more than) offset the negative incentive effect of taxation (Berg et al. 2018; Gründler and Scheuermeyer 2018).

Second, the negative impact of taxation on incentives, and hence on long-run growth, is likely not as strong as predicted by traditional growth models. Jaimovich and Rebelo (2017) demonstrate in their model that taxation may have strongly nonlinear effects on growth: low to medium tax rates impose only a very modest drag on long-term growth. However, if tax rates rise to very high levels (such as above 80 per cent), their negative impact on growth becomes quite dramatic. If we consider these results together, higher taxes do not appear to have a noticeable negative impact on long-run growth unless tax rates reach very extreme levels.

Work on the political economy channel has been highly influential and continues to reverberate today. However, due to the aforementioned problems, which have not been satisfactorily addressed thus far, there is little empirical evidence to support either of the theoretically critical linkages posited under the political economy channel.

5.3 Does sociopolitical instability hamper growth?

The sociopolitical instability approach (see Section 3.4) hypothesizes that inequality causes sociopolitical instability, which in turn leads to more economic insecurity and thus less investment and growth. The vast majority of empirical studies yield evidence consistent with the general rationale of this theoretical approach (see, e.g., Aisen and Veiga 2013; Alesina and Perotti 1996; Alesina et al. 1996; Jong-A-Pin 2009; Keefer and Knack 2002; Svensson 1998). Different papers focus on different transmission channels through which sociopolitical instability has a negative impact on economic growth: (i) Alesina and Perotti (1996) and Perotti (1996) investigate the occurrence of violent political unrest; (ii) Alesina et al.

22 An alternative theoretical argument is outlined in Li and Zou (1998), who demonstrate that when government spending is divided between production services (i.e. entering the production function) and consumption services (i.e. entering the utility function), as in Section V in Barro (1990), the effect of inequality on growth becomes ambiguous.

23 Gründler and Scheuermeyer (2018) suggest that redistribution may even be growth-enhancing in developing countries. However, they caution that the most growth-friendly environment is characterized by a low level of net inequality resulting from an equal distribution of market incomes and not from redistribution.

24 In the Jaimovich and Rebelo (2017) model, doubling tax rates τ from 30 to 60 per cent reduces growth from 2 to 1.65 per cent, which is significantly less than in the more standard model where growth is halved from 2 to 1 per cent. For details, see Jaimovich and Rebelo (2017).

25 According to Google Scholar, the two main articles by Alesina and Rodrik (1994) and Persson and Tabellini (1994) had been cited 12,619 times as of 13 July 2021.

26 An exception to the general consensus is the paper by Campos and Nugent (2002), who find no evidence of a negative long-run relationship between political instability and growth.
(1996) and Aisen and Veiga (2013) focus on government instability (measured by government turnover and cabinet changes, respectively); and (iii) Svensson (1998), Keefer and Knack (2002), and Jong-A-Pin (2009) suggest that political instability affects growth through the quality of property rights.

5.4 Do imperfect credit markets and lack of opportunities limit (human) capital accumulation and growth?

The capital market imperfection approach and its theoretical extensions (see Section 3.5) have spawned a vast body of empirical contributions that generally support the validity of this rationale. The main theoretical prediction of the capital market imperfection approach is that with greater inequality, the poor tend to under-invest in their human capital because they do not have sufficient wealth and/or access to credit to undertake these investments. Early empirical studies (see, e.g., Deininger and Squire 1998 and Perotti 1996) offered suggestive evidence that inequality could negatively affect growth through the credit constraint channel. However, according to Neves and Silva (2014), these early results should be treated with great caution, as they do not test this theoretical mechanism directly and/or appropriately.27

On this note, Cingano (2014) argues that while it is well established that income inequality across countries is negatively related to educational attainment (see, e.g., Figure 4 in Cingano 2014), this simple correlation is not sufficient to confirm the theory, as it is likely to suffer from omitted variable bias. According to Cingano, a more appropriate empirical test is to examine how rising inequality within a country affects human capital accumulation of individuals from different socioeconomic backgrounds. After all, if rising inequality has a stronger negative impact on the educational attainment of the poor, this would support the idea of the credit market imperfection channel. Employing individual-level survey data from OECD countries, Cingano (2014) presents evidence consistent with this proposition, finding that greater income inequality reduces educational outcomes for individuals from lower-class socioeconomic backgrounds but does not impact the outcomes of individuals from middle- and high-class socioeconomic backgrounds. In a different vein, the seminal contribution of Beck et al. (2007) provides direct support for the credit market imperfection channel by looking at the income growth of the poor. Beck et al. (2007) examine the theoretical prediction that improved financial development—by easing credit constraints, which are likely to be particularly binding for the poor—should disproportionately benefit the poor. They find consistent empirical evidence supporting this rationale: increased financial development drives bottom quintile incomes to grow faster than average GDP per capita.

Moreover, two recent empirical studies provide supporting evidence for two theoretical extensions of the credit market imperfection approach proposed by Galor and Moav (2004) and Galor et al. (2009). First, based on the theoretical arguments of Galor and Moav (2004), Erman and te Kaat (2019) postulate that inequality has a positive effect on the growth rates of physical-capital-intensive industries and a negative effect on human-capital-intensive industries. Their article is innovative in the empirical inequality–growth literature in that it provides evidence at the industry level. Using data for 22 industries in 86 countries for the period 1980–2012, Erman and te Kaat (2019) provide evidence consistent with the theoretical hypothesis outlined above. In particular, they find that the difference in annual value-added growth between an industry at the 75th versus the 25th percentile of physical capital intensity is 0.8 to 1.1 percentage points higher in a country with a Gini coefficient at the 75th percentile than one with a Gini at the 25th percentile. In contrast, but in line with theory, human–capital-intensive industries grow less in countries with a more unequal income distribution. In light of these results, the authors suggest that the empirical difficulty in establishing a clear relationship between inequality and growth may be because different countries have distinct production structures. If the relative importance of human- and physical-capital intensity in a country’s production is not taken into account, this may obscure the overall relationship between inequality and growth. Second, Galor et al. (2009) hypothesize that greater land inequality negatively affects human capital accumulation because land-owning elites have incentives

27 See Neves and Silva (2014) for a detailed discussion of this early literature.
to delay economy-wide investment in human capital, such as public schooling, thereby slowing the pace of transition from an agrarian to an industrial economy and thus moderating economic growth. Instrumental variable (IV) estimates for Brazil in Wigton-Jones (2020) provide evidence consistent with this theoretical prediction: greater land inequality in 1920 is associated with a substantial reduction in local public welfare spending and, to a lesser extent, education spending per child over the 1995–2005 period. Moreover, the results suggest that higher land inequality is related to lower long-run human development, attributable to lower income and life expectancy.

A related issue raised in the literature is unequal access to education. Due to a lack of opportunities available to those from poor social origins, it is often not the most talented individuals who invest in human capital but those with a more favourable social background. If so, inefficiencies and thus lower growth occur because it is not the individuals with the highest returns who invest but those who enjoy social privileges. Marrero and Rodríguez (2013) provide empirical evidence for their hypothesis that inequality of effort (IE) has a positive effect (see Section 3.2) and inequality of opportunity (IO) a negative effect on subsequent growth. From this observation, they conclude that income inequality, as a composite concept of IE and IO, may be partly responsible for the ambiguity of the empirical results in the inequality–growth literature. While the initial results of Marrero and Rodríguez (2013) are based on data for 26 US states, more recent research has examined the same question using cross-country panel data. First, Ferreira et al. (2018) find no clear relationship between either inequality component (IO or IE) and later growth in either of the two datasets that they exploit. Consequently, they conclude that the theoretical hypothesis that IO is bad for growth cannot be confirmed. Second, and in a different vein, Aiyar and Ebeke (2020) analyze the interaction between IO (measured by intergenerational mobility) and income inequality. They hypothesize that in countries with high IO (i.e. where parents’ economic circumstances limit their children’s opportunities), income inequality has a stronger negative effect on subsequent growth. Consistent with this, their empirical results suggest that the lower intergenerational mobility is, the larger the negative impact of income inequality on growth. Moreover, they argue that not accounting for the interaction between IO and income inequality may result in omitted variable bias, which may explain the inconclusiveness in the empirical inequality–growth literature. A closer examination of this proposition could be an interesting task for further research.

Misallocation of talent in an economy due to barriers to human capital accumulation is expected to have significant negative consequences for long-run growth. In this context, Hsieh et al. (2019) find (through the lens of a general equilibrium model) that declining barriers to human capital accumulation explain 36 per cent of US GDP per capita growth between 1960 and 2010, while declining labour market discrimination explains only 8 per cent. Moreover, it is quite conceivable that such impediments to human capital formation might have all the more negative effects on growth in developing countries—this has yet to be confirmed empirically, however.

5.5 Does the demand-side drive innovation and growth?

The common key ingredient of demand-driven innovation approach models (see Section 3.6) in comparison to more standard growth models is the adoption of non-homothetic preferences. Empirical evidence supports this theoretical choice, as it suggests that the diversity of consumption, that is, the number of product varieties consumed by individuals, strongly varies with their income level (Clements et al. 2006; Falkinger and Zweimüller 1996; Jackson 1984). Engel’s law and the increasing diversification of consumer spending as incomes rise certainly capture a stylized fact (see, e.g., Chai et al. 2015) and are central to understanding patterns of trade between rich and poor countries (Caron et al. 2014). In future research, it would be interesting to test the theoretical predictions of the demand-based innovation approach. To the best of our knowledge, we are not aware of any empirical investigation that has directly tested the theoretical predictions of this approach. Such work could answer the question of whether inequality influences growth through price or market-size effects.
The relationship between inequality and growth is an essential question in economic science. This complex question is far from settled, but important progress has been made. This study critically reviewed the theoretical and empirical literature on the causal effect of inequality on economic growth. We did not survey theories and evidence that—building on the Kuznets curve hypothesis—investigate causality running in the reverse direction from economic growth to inequality.

Empirical estimates on the overall impact of inequality on economic growth in reduced form remain inconclusive. Depending on the specification, significant positive and negative effects have been found, and a clear consensus has not yet been established, although, in particular among developing countries, there is more evidence for a negative link than for a positive one. Given the ambiguity of the overall estimation results, we have summarized the empirical results testing specific theoretical channels of how inequality affects growth. The underlying logic of the savings channel (the rising marginal propensity to save) and of the demand-driven innovation approach (Engel’s law) is well documented and acknowledged. However, whether and, in particular, to what extent inequality affects growth through these two channels is not yet clearly established. Meanwhile, both sociopolitical instability and, in particular, the credit market imperfection channel have received empirical support that largely validates their respective reasoning. In contrast, the endogenous fiscal policy channel, while highly influential, is generally not supported by the data. In particular, there is no evidence that the tax rates applied in most countries are statistically significantly related to their long-run growth performance. While several of the aforementioned channels are backed empirically, as discussed in this survey, it is uncertain how quantitatively relevant any particular channel is. A pending and ambitious task is therefore to more accurately quantify the relative contribution of the various transmission mechanisms that determine the overall effect of inequality on growth.

Without making a statement on welfare, we synthesize the theoretical arguments to suggest that some intermediate level of inequality is likely growth maximizing. This is because when inequality is extremely low, there are few incentives to save, invest in (human) capital or innovate, while as inequality rises, the negative channels—such as credit market imperfections or sociopolitical instability—gain importance and exert a more adverse impact on growth. Taken together, it seems fair to say that a society that has lower inequality of opportunities and fewer barriers to human capital accumulation has a better shot at achieving prosperity and stability. Economic and political institutions leading to an equal primary income and wealth distribution are crucial in this regard. After all, when the ex ante distribution is relatively equal, there is less need for potentially costly redistribution ex post. Instrumental to achieving such a state is an education system and a free economic environment allowing all people to realize their potential. With equal market distribution and low IO, social mobility is high, and a broad part of the population is able to stand on its own. Therefore, such a country is likely to enjoy active engagement of broad segments of the population in its economic and public spheres.

The preliminary insights from this survey point to several open questions and could provide guidance for interesting avenues in future research. First, there are several theoretical channels, e.g. the demand-driven innovation approach, whose proposed mechanisms deserve to be scrutinized more carefully in empirical studies. Second, wealth plays a prominent role in the theoretical discussion. However, the debate on how best to incorporate wealth inequality into the empirical literature on inequality and growth has just begun. This, however, has become even more important as the ratio of wealth to income has risen dramatically in recent years (see, e.g., Baseligia and Martínez 2021; Blanco et al. 2021; Piketty and Zucman 2014). Future empirical work should therefore study how wealth, properly measured, and income inequality interact to affect growth. Third, on a methodological level, research on the most relevant estimation techniques in the growth literature will be key: a better understanding of how to exploit cross-sectional versus time-series variation could lead to more flexible functional assumptions.
on the inequality–growth relationship. This would help clarify the potentially heterogeneous impact of inequality at different levels of economic development. Fourth, investigations providing a better theoretical and empirical understanding of the interplay of the different channels in this relationship, such as social mobility and the level of (wealth) inequality, offer a further fruitful research direction. In a similar vein, such works could also serve to clarify whether inequality at the bottom or at the top of the distribution causes differential rates of income growth along the distribution. Finally, undertaking the ambitious task of structurally estimating different channels would deepen our understanding of causality and the quantitative relevance of the influencing factors. All these tentative directions point to open and interesting issues to be addressed in the years ahead.

References

Appendix

Table A1: Main reduced-form estimates on the inequality–growth relationship

<table>
<thead>
<tr>
<th>Study</th>
<th>Countries</th>
<th>Number of obs.</th>
<th>Time period</th>
<th>Structure of data</th>
<th>Length of growth period</th>
<th>Inequality concept and measurement</th>
<th>Estimation technique</th>
<th>Main results</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partridge (1997)</td>
<td>48 US</td>
<td>144</td>
<td>1960–1990</td>
<td>Panel</td>
<td>10 yr.</td>
<td>Income: Share of Q3</td>
<td>FE (2SLS)</td>
<td>(−)</td>
<td>No effect for the full sample, but (+) for rich and (−) for poor countries.</td>
</tr>
<tr>
<td>Forbes (2000)</td>
<td>45 LD/HD</td>
<td>135</td>
<td>1970–1995</td>
<td>Panel</td>
<td>5 yr.</td>
<td>Income: Gini</td>
<td>D-GMM</td>
<td>(+)</td>
<td>It matters how inequality is measured: (i) through net income, gross income, or expenditures; (ii) at the household or individual level.</td>
</tr>
<tr>
<td>Castelló and Doménech (2002)</td>
<td>83 LD/HD</td>
<td>87</td>
<td>1960–1990</td>
<td>CS</td>
<td>30 yr.</td>
<td>Human Capital: Gini</td>
<td>OLS</td>
<td>(−)</td>
<td>Inequality at the top is positively related to growth, while inequality at the bottom is negatively related to growth. Key finding: using a single inequality statistic may be insufficient.</td>
</tr>
<tr>
<td>Study</td>
<td>Countries</td>
<td>Number of obs.</td>
<td>Time period</td>
<td>Structure of data</td>
<td>Length of growth period</td>
<td>Inequality concept and measurement</td>
<td>Estimation technique</td>
<td>Main results</td>
<td>Remarks</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>------------------------------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>Castelló-Climent (2010)</td>
<td>56 LD/HD</td>
<td>244</td>
<td>1970–2000</td>
<td>Panel</td>
<td>5 yr.</td>
<td>Income: Gini</td>
<td>S-GMM</td>
<td>(−)</td>
<td>Again, the negative effect is driven by LD countries. For HD countries the effect is positive.</td>
</tr>
<tr>
<td>Herzer and Vollmer (2012)</td>
<td>46 LD/HD</td>
<td>1,196</td>
<td>1970–1995</td>
<td>Panel, level</td>
<td></td>
<td>Income: Gini</td>
<td>*DOLS</td>
<td>(−)</td>
<td>The negative effect is robust across different subsamples (e.g., LD vs. HD countries).</td>
</tr>
<tr>
<td>Marrero and Rodríguez (2013)</td>
<td>26 US</td>
<td>78</td>
<td>1970–2000</td>
<td>Panel</td>
<td>10 yr.</td>
<td>Income: Theil (Total)</td>
<td>S-GMM</td>
<td>(+)</td>
<td>Total income inequality can be decomposed into inequality of opportunity (IO) and effort (IE). IO is (−) and IE (+) associated with growth. Total effect depends on strength of the two channels.</td>
</tr>
<tr>
<td>Marrero and Rodríguez (2013)</td>
<td>54 LD/HD</td>
<td>240</td>
<td>1965–2000</td>
<td>Panel</td>
<td>5 yr.</td>
<td>Income: Gini</td>
<td>*(semi-parametric)</td>
<td>(−)</td>
<td>Including both current and 5-year lagged Gini jointly in the estimation yields the result: inequality increases growth in the short run (5 yrs.) and reduces it in the long run (10 yrs.). The latter effect is quantitatively more important. Higher inequality is also linked to shorter growth spells.</td>
</tr>
<tr>
<td>Halter et al. (2014)</td>
<td>70 LD/HD</td>
<td>227</td>
<td>1965–2005</td>
<td>Panel</td>
<td>5 yr.</td>
<td>Income: Gini</td>
<td>S-GMM</td>
<td>(+)</td>
<td>Inequality of opportunity (IO) and effort (IE) analogous to that in Marrero and Rodríguez (2013) find no supporting evidence for IO (−) and IE (+). No robust link between total inequality and growth.</td>
</tr>
<tr>
<td>Halter et al. (2014)</td>
<td>70 LD/HD</td>
<td>227</td>
<td>1965–2005</td>
<td>Panel</td>
<td>10 yr.</td>
<td>Income: Gini</td>
<td>S-GMM</td>
<td>(−)</td>
<td>A decomposition into IO and IE analogous to that in Marrero and Rodríguez (2013) find no supporting evidence for IO (−) and IE (+). No robust link between total inequality and growth.</td>
</tr>
<tr>
<td>Van der Weide and Milanovic (2018)</td>
<td>48 US</td>
<td>240</td>
<td>1960–2010</td>
<td>Panel</td>
<td>10 yr.</td>
<td>Income: Gini</td>
<td>S-GMM</td>
<td>(−)</td>
<td>The average negative effect is driven mainly by lower subsequent growth among poorer income percentiles, and not present (or turns positive) among the higher percentiles.</td>
</tr>
<tr>
<td>El-Shagi and Shao (2019)</td>
<td>123 LD/HD</td>
<td>694</td>
<td>1960–2010</td>
<td>Panel</td>
<td>5 yr.</td>
<td>Income: Gini</td>
<td>*LSDV</td>
<td>(+)</td>
<td>Redistribution may have a positive effect when the average level of education is low. Key result: inequality has a (+) effect in physical- and a (−) effect in human-capital-intensive industries. The main results are robust to the panel specification.</td>
</tr>
<tr>
<td>Litschig and Lombardi (2019)</td>
<td>3,659 BRA municipalities</td>
<td>3'659</td>
<td>1970–2010</td>
<td>CS</td>
<td>30 yr.</td>
<td>Income: share of Q1, Q2, Q4, Q5</td>
<td>OLS</td>
<td>(−)</td>
<td>The positive effect is driven by inequality at the bottom of the distribution. No effect of higher right-tail inequality. Main results robust to the panel specification.</td>
</tr>
<tr>
<td>Study</td>
<td>Countries</td>
<td>Number of obs.</td>
<td>Time period</td>
<td>Structure of data</td>
<td>Length of growth period</td>
<td>Inequality concept and measurement</td>
<td>Estimation technique</td>
<td>Main results</td>
<td>Remarks</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>-----------------------------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Aiyar and Ebeke (2020)</td>
<td>55 LD/HD</td>
<td>270</td>
<td>1960–2015</td>
<td>Panel</td>
<td>5 yr.</td>
<td>Income: Gini</td>
<td>S-GMM</td>
<td>[-]</td>
<td>Key finding: inequality has a (−) effect when interacted with intergenerational mobility (IGM). The lower the IGM, the greater is the (−) impact of inequality on growth.</td>
</tr>
<tr>
<td>Breunig and Majeed (2020)</td>
<td>102 LD/HD</td>
<td>410</td>
<td>1956–2011</td>
<td>Panel</td>
<td>5 yr.</td>
<td>Income: Gini</td>
<td>S-GMM</td>
<td>[-]</td>
<td>Key result: inequality has a (−) effect when interacted with poverty. The higher the poverty level, the greater is the (−) impact of inequality on growth.</td>
</tr>
</tbody>
</table>

Note: this table summarizes the main results of relevant empirical work estimating a reduced-form relationship between inequality and growth, with more emphasis on cutting-edge research. The results are presented schematically and are reduced to their core statements. The interpretation is always that more inequality has a positive (+) or a negative (−) impact on growth. The studies, of course, contain much more nuanced and detailed results than those listed here. The reader is therefore strongly encouraged to refer to the original papers for a more detailed and nuanced interpretation of the results. **Abbreviations and symbols:** Countries: LD indicates developing and HD developed countries. MSAs indicates metropolitan statistical areas. **Structure of data:** CS is short for cross-sectional data. **Inequality concept and measurement:** Q3 is short for the share of the third quintile. 90/75P refers to the 90/75th percentile ratio. MLD is short for the mean log deviation. **Estimation technique:** OLS refers to ordinary least squares, 2SLS to two-stage least squares, WLS to weighted least squares, FE to the fixed effects model, RE to the random effects model, D-GMM to the (first-)difference generalized method of moments, and S-GMM to system GMM. * The estimation methods marked with an asterisk are not standard methods in the literature. For details on these methods, refer to the original papers. **Main results:** round parentheses indicate a statistically significant and square brackets a statistically non-significant effect. **Source:** authors’ elaboration.